Jak*_*old 2 algorithm graph undirected-graph
给定一个无向图,我怎样才能找到所有的桥?我只发现Tarjan的算法看起来相当复杂.
似乎应该有多个线性时间解决方案,但我找不到任何东西.
Tarjan算法是无线图中第一个以线性时间运行的桥寻找算法.但是,存在一个更简单的算法,您可以在此处查看其实现.
private int bridges; // number of bridges
private int cnt; // counter
private int[] pre; // pre[v] = order in which dfs examines v
private int[] low; // low[v] = lowest preorder of any vertex connected to v
public Bridge(Graph G) {
low = new int[G.V()];
pre = new int[G.V()];
for (int v = 0; v < G.V(); v++) low[v] = -1;
for (int v = 0; v < G.V(); v++) pre[v] = -1;
for (int v = 0; v < G.V(); v++)
if (pre[v] == -1)
dfs(G, v, v);
}
public int components() { return bridges + 1; }
private void dfs(Graph G, int u, int v) {
pre[v] = cnt++;
low[v] = pre[v];
for (int w : G.adj(v)) {
if (pre[w] == -1) {
dfs(G, v, w);
low[v] = Math.min(low[v], low[w]);
if (low[w] == pre[w]) {
StdOut.println(v + "-" + w + " is a bridge");
bridges++;
}
}
// update low number - ignore reverse of edge leading to v
else if (w != u)
low[v] = Math.min(low[v], pre[w]);
}
}
Run Code Online (Sandbox Code Playgroud)
该算法通过维持2个数组前置和下行来完成工作.pre保存节点的预订遍历编号.所以pre [0] = 2表示在第3次dfs调用中发现了顶点0.而low [u]保存从u可到达的任何顶点的最小预订数.
该算法在边缘u-v时检测到一个桥,其中u在预编号中首先出现,低[v] == pre [v].这是因为如果我们删除u - v之间的边缘,则v无法到达u之前的任何顶点.因此,移除边缘会将图形拆分为2个单独的图形.
有关更详细的解释,您还可以查看此答案.