我有一个大型数据框(400000 x 50),我想直观地检查结构和空白/间隙.
是否有现有的库或ggplot2函数,可以吐出这样的图片:

其中红色可能是"日期",蓝色代表"因子",绿色代表"字符",黑色代表空白/ NA.
您是否尝试过dfviewr的lasagnar?以下内容将再现df.in包中50行x 10列的所需图形:
library(devtools)
install_github("swihart/lasagnar")
library(lasagnar)
dfviewr(df=df.in)
## also try:
##dfviewr(df=df.in, legend=FALSE)
##dfviewr(df=df.in, gridlines=FALSE)
Run Code Online (Sandbox Code Playgroud)

所以,公平地说,dfviewr在问题发生时并不存在,但要看到导致其发展的一些想法以及如何实际可视化400,000行,请参阅最底层的for循环,并且不要太莽撞并且运行功能df2.in(400,000 x 50):
## Do not run:
## system.time(dfviewr(df=df2.in, gridlines=FALSE)) ## 10 minutes before useRaster=TRUE
## 2 minutes after
Run Code Online (Sandbox Code Playgroud)
此外,tabplot:::tableplot()似乎不支持日期或字符:
library(tabplot)
tableplot(df.in)
Run Code Online (Sandbox Code Playgroud)
生产:
Error in ff(initdata = initdata, length = length, levels = levels, ordered = ordered, : vmode 'character' not implemented
所以我们删除了字符列(#9):
tableplot(df.in[,c(-9)])
Run Code Online (Sandbox Code Playgroud)
产生:
Error in UseMethod("as.hi") :
no applicable method for 'as.hi' applied to an object of class "c('POSIXct', 'POSIXt')"
所以我们也删除了第一列(日期):
tableplot(df.in[,c(-1,-9)])
Run Code Online (Sandbox Code Playgroud)
得到

对于df2.in没有日期或字符列的400,000 x 50 ,图像渲染非常快(6秒):
system.time(tableplot(df2.in[,c(-(1+seq(0,40,10)), -(9+seq(0,40,10))) ]))
Run Code Online (Sandbox Code Playgroud)

我首先介绍50行的婴儿示例,然后是400,000行的示例.
对于它的价值,我在@cmbarbu的评论中,关于在同一个地块上直观地观察400K行的评论受到屏幕的限制,该屏幕最多具有2K像素的高度,因此在页面之间的某种分离可能有利于防止过度绘图.我通过在1000个图表/页面中制作包含400行的PDF文档来尝试将此分开.
我不知道将使用data.frame作为输入呈现请求的绘图的函数.我的方法将生成data.frame的矩阵掩码,然后lasagna()从lasagnargithub上的包中使用. lasagna()是函数的包装器,image( t(X)[, (nrow(X):1)] )其中X是矩阵.此调用重新排序行,以便它们匹配data.frame的顺序,并且包装器允许切换网格线和添加图例的功能(legend = TRUE将调用image.plot( t(X)[, (nrow(X):1)] )- 但是,在下面的示例中,我明确添加了一个图例而不是使用image.plot()).
library(fields)
library(colorspace)
library(lubridate)
library(devtools)
install_github("swihart/lasagnar")
library(lasagnar)
Run Code Online (Sandbox Code Playgroud)
df.in <- data.frame(date=seq(ymd('2012-04-07'),ymd('2013-03-22'),
by = '1 week'),
col1=rnorm(50),
col2=rnorm(50),
col3=rnorm(50),
col4=rnorm(50),
col5=as.factor(c("A","B")),
col6=as.factor(c("MS","PHD")),
col7=rnorm(50),
col8=(c("cherlene","randy")),
col9=rnorm(50),
stringsAsFactors=FALSE)
Run Code Online (Sandbox Code Playgroud)
df.in[19:23 , 2:4 ] <- NA
df.in[c(7, 9), ] <- NA
df.in[2:30 , 4 ] <- NA
df.in[10 , 7 ] <- NA
df.in[14 , 6:10 ] <- NA
Run Code Online (Sandbox Code Playgroud)
str(df.in)
Run Code Online (Sandbox Code Playgroud)
mat.out <- matrix(NA, nrow=nrow(df.in), ncol=ncol(df.in))
Run Code Online (Sandbox Code Playgroud)
## red for dates
mat.out[,sapply(df.in,is.POSIXct)] <- 1
## blue for factors
mat.out[,sapply(df.in,is.factor)] <- 2
## green for characters
mat.out[,sapply(df.in,is.character)] <- 3
## white for numeric
mat.out[,sapply(df.in,is.numeric)] <- 4
## black for NA
mat.out[is.na(df.in)] <- 5
Run Code Online (Sandbox Code Playgroud)
row.names(mat.out) <- 1:nrow(df.in)
Run Code Online (Sandbox Code Playgroud)
lasagna(mat.out, col=c("red","blue","green","white","black"),
cex=0.67, main="")
Run Code Online (Sandbox Code Playgroud)

lasagna(mat.out, col=c("red","blue","green","white","black"),
cex=.67, main="")
legend("bottom", fill=c("red","blue","green","white","black"),
legend=c("dates", "factors", "characters", "numeric", "NA"),
horiz=T, xpd=NA, inset=c(-.15), border="black")
Run Code Online (Sandbox Code Playgroud)

lasagna(mat.out, col=c("red","blue","green","white","black"),
cex=.67, main="", gridlines=FALSE)
legend("bottom", fill=c("red","blue","green","white","black"),
legend=c("dates", "factors", "characters", "numeric", "NA"),
horiz=T, xpd=NA, inset=c(-.15), border="black")
Run Code Online (Sandbox Code Playgroud)

df2.10 <- data.frame(date=seq(ymd('2012-04-07'),ymd('2013-03-22'),
by = '1 week'),
col1=rnorm(400000),
col2=rnorm(400000),
col3=rnorm(400000),
col4=rnorm(400000),
col5=as.factor(c("A","B")),
col6=as.factor(c("MS","PHD")),
col7=rnorm(400000),
col8=(c("cherlene","randy")),
col9=rnorm(400000),
stringsAsFactors=FALSE)
Run Code Online (Sandbox Code Playgroud)
df2.10[c(19:23), c(2:4) ] <- NA
df2.10[c(7, 9), ] <- NA
df2.10[c(2:30), 4 ] <- NA
df2.10[10 , 7 ] <- NA
df2.10[14 , c(6:10) ] <- NA
df2.10[c(450:750), ] <- NA
df2.10[c(399990:399999), ] <- NA
Run Code Online (Sandbox Code Playgroud)
df2.in <- cbind(df2.10, df2.10, df2.10, df2.10, df2.10)
str(df2.in)
Run Code Online (Sandbox Code Playgroud)
mat.out <- matrix(NA, nrow=nrow(df2.in), ncol=ncol(df2.in))
Run Code Online (Sandbox Code Playgroud)
## red for dates
mat.out[,sapply(df2.in,is.POSIXct)] <- 1
## blue for factors
mat.out[,sapply(df2.in,is.factor)] <- 2
## green for characters
mat.out[,sapply(df2.in,is.character)] <- 3
## white for numeric
mat.out[,sapply(df2.in,is.numeric)] <- 4
## black for NA
mat.out[is.na(df2.in)] <- 5
Run Code Online (Sandbox Code Playgroud)
row.names(mat.out) <- 1:nrow(df2.in)
Run Code Online (Sandbox Code Playgroud)
pdf("pages1000.pdf")
system.time(
for(i in 1:1000){
lasagna_plain(mat.out[((i-1)*400+1):(400*i),],
col=c("red","blue","green","white","black"), cex=1,
main=paste0("rows: ", (i-1)*400+1, " - ", (400*i)))
}
)
dev.off()
Run Code Online (Sandbox Code Playgroud)
for循环在我的机器上完成了40秒,之后很快就完成了PDF.现在只需在PDF查看器中标准化页面大小后向下翻页,查看以下页面/图:
