Jef*_*all 10 apache-spark pyspark
假设我有多行电话记录格式:
[CallingUser, ReceivingUser, Duration]
Run Code Online (Sandbox Code Playgroud)
如果我想知道给定用户在电话上的总时间(用户是CallingUser或ReceivingUser的持续时间总和).
实际上,对于给定的记录,我想创建2对(CallingUser, Duration)
和(ReceivingUser, Duration)
.
最有效的方法是什么?我可以加2 RDDs
,但我不清楚这是一个好方法:
#Sample Data:
callData = sc.parallelize([["User1", "User2", 2], ["User1", "User3", 4], ["User2", "User1", 8] ])
calls = callData.map(lambda record: (record[0], record[2]))
#The potentially inefficient map in question:
calls += callData.map(lambda record: (record[1], record[2]))
reduce = calls.reduceByKey(lambda a, b: a + b)
Run Code Online (Sandbox Code Playgroud)
Oth*_*ers 11
你想要平面地图.如果你编写一个返回列表的函数,[(record[0], record[2]),(record[1],record[2])]
那么你可以平面映射它!
使用flatMap(),它适用于获取单个输入并生成多个映射输出.完成代码:
callData = sc.parallelize([["User1", "User2", 2], ["User1", "User3", 4], ["User2", "User1", 8]])
calls = callData.flatMap(lambda record: [(record[0], record[2]), (record[1], record[2])])
print calls.collect()
# prints [('User1', 2), ('User2', 2), ('User1', 4), ('User3', 4), ('User2', 8), ('User1', 8)]
reduce = calls.reduceByKey(lambda a, b: a + b)
print reduce.collect()
# prints [('User2', 10), ('User3', 4), ('User1', 14)]
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
8161 次 |
最近记录: |