我有一个像这样的data.frame(真正的数据集有更多的行和列)
set.seed(15)
dd <- data.frame(id=letters[1:4], matrix(runif(5*4), nrow=4))
#   id        X1        X2        X3        X4        X5
# 1  a 0.6021140 0.3670719 0.6872308 0.5090904 0.4474437
# 2  b 0.1950439 0.9888592 0.8314290 0.7066286 0.9646670
# 3  c 0.9664587 0.8151934 0.1046694 0.8623137 0.1411871
# 4  d 0.6509055 0.2539684 0.6461509 0.8417851 0.7767125
我希望能够编写一个dplyr语句,我可以在其中选择列的子集并对其进行修改.(我正在尝试做类似于在data.table中使用.SDcols的东西).
对于一个简化的例子,这里是我希望能够编写的函数,用于为保持所有其他列的偶数"X"列的和和平均值添加列.使用基数R的期望输出是
(cols<-paste0("X", c(2,4)))
# [1] "X2" "X4"
cbind(dd,evensum=rowSums(dd[,cols]),evenmean=rowMeans(dd[,cols]))
#   id        X1        X2        X3        X4        X5   evensum  evenmean
# 1  a 0.6021140 0.3670719 0.6872308 0.5090904 0.4474437 0.8761623 0.4380811
# 2  b 0.1950439 0.9888592 0.8314290 0.7066286 0.9646670 1.6954878 0.8477439
# 3  c 0.9664587 0.8151934 0.1046694 0.8623137 0.1411871 1.6775071 0.8387535
# 4  d 0.6509055 0.2539684 0.6461509 0.8417851 0.7767125 1.0957535 0.5478768
但我想用类似dplyr的链来做同样的事情.在一般情况下,我想能够使用任何select()的辅助功能,例如starts_with,ends_with,matches等任何功能.这是我尝试过的
library(dplyr)
partial_mutate1 <- function(x, colspec, ...) {
    select_(x, .dots=list(lazyeval::lazy(colspec))) %>% 
    transmute_(.dots=lazyeval::lazy_dots(...)) %>% 
    cbind(x,.)
}
dd %>% partial_mutate1(num_range("X", c(2,4)), 
    evensum=rowSums(.), evenmean=rowMeans(.))
但是,这会引发错误
Error in rowSums(.) : 'x' must be numeric
这似乎是因为.似乎是指整个date.frame而不是所选的子集.(与错误相同rowSums(dd)).但请注意,这会产生所需的输出
partial_mutate2 <- function(x, colspec) {
    select_(x, .dots=list(lazyeval::lazy(colspec))) %>% 
    transmute(evensum=rowSums(.), evenmean=rowMeans(.)) %>% 
    cbind(x,.)
}
dd %>% partial_mutate2(seq(2,ncol(dd),2))
我猜这是某种环境问题?有关如何传递参数的任何建议,partial_mutate1以便.正确地从"select() -  ed"数据集中获取值?
我是否遗漏了某些内容,或者是否按预期工作:
cols <- paste0("X", c(2,4))
dd %>% mutate(evensum = rowSums(.[cols]), evenmean = rowMeans(.[cols]))
#  id        X1        X2        X3        X4        X5   evensum  evenmean
#1  a 0.6021140 0.3670719 0.6872308 0.5090904 0.4474437 0.8761623 0.4380811
#2  b 0.1950439 0.9888592 0.8314290 0.7066286 0.9646670 1.6954878 0.8477439
#3  c 0.9664587 0.8151934 0.1046694 0.8623137 0.1411871 1.6775071 0.8387535
#4  d 0.6509055 0.2539684 0.6461509 0.8417851 0.7767125 1.0957535 0.5478768
或者您是否专门寻找自定义功能来执行此操作?
不完全是你想要的,但如果你想在管道内进行,你可以select在里面明确使用,mutate如下所示:
dd %>% mutate(xy = select(., num_range("X", c(2,4))) %>% rowSums)
#  id        X1        X2        X3        X4        X5        xy
#1  a 0.6021140 0.3670719 0.6872308 0.5090904 0.4474437 0.8761623
#2  b 0.1950439 0.9888592 0.8314290 0.7066286 0.9646670 1.6954878
#3  c 0.9664587 0.8151934 0.1046694 0.8623137 0.1411871 1.6775071
#4  d 0.6509055 0.2539684 0.6461509 0.8417851 0.7767125 1.0957535
但是,如果要应用多个函数,则会更复杂一些.您可以使用辅助函数(..未经过彻底测试..):
f <- function(x, ...) {
  n <- nrow(x)
  x <- lapply(list(...), function(y) if (length(y) == 1L) rep(y, n) else y)
  matrix(unlist(x), nrow = n, byrow = FALSE)
}
然后像这样应用它:
dd %>% mutate(xy = select(., num_range("X", c(2,4))) %>% f(., rowSums(.), max(.)))
#  id        X1        X2        X3        X4        X5      xy.1      xy.2
#1  a 0.6021140 0.3670719 0.6872308 0.5090904 0.4474437 0.8761623 0.9888592
#2  b 0.1950439 0.9888592 0.8314290 0.7066286 0.9646670 1.6954878 0.9888592
#3  c 0.9664587 0.8151934 0.1046694 0.8623137 0.1411871 1.6775071 0.9888592
#4  d 0.6509055 0.2539684 0.6461509 0.8417851 0.7767125 1.0957535 0.9888592