每次使用 scikit 运行线性回归时都会得到不同的结果

azu*_*ric 3 python linear-regression pandas scikit-learn

嗨,我有一个正在尝试优化的线性回归模型。我正在优化指数移动平均线的跨度和我在回归中使用的滞后变量的数量。

但是我一直发现结果和计算出的 mse 不断得出不同的最终结果。不知道为什么有人可以帮忙?

启动循环后的过程: 1. 创建具有三个变量的新数据框 2. 删除 nil 值 3. 为每个变量创建 ewma 4. 为每个变量创建滞后 5. 删除 NA 6. 创建 X,y 7. 回归并保存 ema 跨度和如果更好 MSE 8. 用下一个值开始循环

我知道这可能是一个交叉验证的问题,但由于它可能是一个程序化的,我在这里发布:

bestema = 0
bestlag = 0
mse = 1000000

for e in range(2, 30):
    for lags in range(1, 20):
        df2 = df[['diffbn','diffbl','diffbz']]
        df2 = df2[(df2 != 0).all(1)]        
        df2['emabn'] = pd.ewma(df2.diffbn, span=e)
        df2['emabl'] = pd.ewma(df2.diffbl, span=e)
        df2['emabz'] = pd.ewma(df2.diffbz, span=e)
        for i in range(0,lags):
            df2["lagbn%s" % str(i+1)] = df2["emabn"].shift(i+1)
            df2["lagbz%s" % str(i+1)] = df2["emabz"].shift(i+1)
            df2["lagbl%s" % str(i+1)] = df2["emabl"].shift(i+1)
        df2 = df2.dropna()
        b = list(df2)
            #print(a)
        b.remove('diffbl')
        b.remove('emabn')
        b.remove('emabz')
        b.remove('emabl')
        b.remove('diffbn')
        b.remove('diffbz')
        X = df2[b]
        y = df2["diffbl"]
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
        #print(X_train.shape)
        regr = linear_model.LinearRegression()
        regr.fit(X_train, y_train)
        if(mean_squared_error(y_test,regr.predict(X_test)) < mse):
            mse = mean_squared_error(y_test,regr.predict(X_test) ** 2)
            #mse = mean_squared_error(y_test,regr.predict(X_test))
            bestema = e
            bestlag = lags
            print(regr.coef_)
            print(bestema)
            print(bestlag)
            print(mse)
Run Code Online (Sandbox Code Playgroud)

jor*_*ris 5

train_test_split来自 sklearn的函数(参见文档:http ://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.train_test_split.html )是随机的,所以每次得到不同的结果是合乎逻辑的。
您可以将参数传递给random_state关键字以使其每次都相同。