ama*_*ouq 13 python voronoi polygons computational-geometry
我有点(例如,lat,lon对的细胞塔位置),我需要得到它们形成的Voronoi细胞的多边形.
from scipy.spatial import Voronoi
tower = [[ 24.686 , 46.7081],
[ 24.686 , 46.7081],
[ 24.686 , 46.7081]]
c = Voronoi(towers)
Run Code Online (Sandbox Code Playgroud)
现在,我需要为每个单元格的lat,lon坐标获取多边形边界(以及该多边形所包围的质心).我需要这个Voronoi也是有限的.意味着边界不会变为无穷大,而是在边界框内.
Fla*_*bes 23
给定一个矩形边界框,我的第一个想法是在这个边界框和Voronoï图之间定义一种交叉操作scipy.spatial.Voronoi.一个想法不一定很好,因为这需要编码计算几何的大量基本功能.
然而,这是我想到的第二个想法(黑客?):计算平面中一组n点的Voronoï图的算法具有时间复杂度O(n ln(n)).如何添加点来限制初始点的Voronoï单元格位于边界框中?
一张图片值得一个伟大的演讲:
我在这做了什么?这很简单!初始点(蓝色)在于[0.0, 1.0] x [0.0, 1.0].然后我[-1.0, 0.0] x [0.0, 1.0]根据x = 0.0(边界框的左边缘)的反射对称得到左边(即)的点(蓝色).对于根据反射对称性x = 1.0,y = 0.0以及y = 1.0(边框的其它边缘),我得到的所有的点(蓝色),我需要做的工作.
然后我跑了scipy.spatial.Voronoi.上图描绘了生成的Voronoï图(我使用scipy.spatial.voronoi_plot_2d).
接下来做什么?只需根据边界框过滤点,边或面.并根据众所周知的公式计算每个面的质心,以计算多边形的质心.这是结果的图像(质心是红色的):
大!它似乎工作.如果在一次迭代后我尝试在质心(红色)而不是初始点(蓝色)上重新运行算法怎么办?如果我一次又一次地尝试怎么办?
第2步
第10步
第25步
凉!Voronoï细胞倾向于最小化它们的能量 ......
import matplotlib.pyplot as pl
import numpy as np
import scipy as sp
import scipy.spatial
import sys
eps = sys.float_info.epsilon
n_towers = 100
towers = np.random.rand(n_towers, 2)
bounding_box = np.array([0., 1., 0., 1.]) # [x_min, x_max, y_min, y_max]
def in_box(towers, bounding_box):
return np.logical_and(np.logical_and(bounding_box[0] <= towers[:, 0],
towers[:, 0] <= bounding_box[1]),
np.logical_and(bounding_box[2] <= towers[:, 1],
towers[:, 1] <= bounding_box[3]))
def voronoi(towers, bounding_box):
# Select towers inside the bounding box
i = in_box(towers, bounding_box)
# Mirror points
points_center = towers[i, :]
points_left = np.copy(points_center)
points_left[:, 0] = bounding_box[0] - (points_left[:, 0] - bounding_box[0])
points_right = np.copy(points_center)
points_right[:, 0] = bounding_box[1] + (bounding_box[1] - points_right[:, 0])
points_down = np.copy(points_center)
points_down[:, 1] = bounding_box[2] - (points_down[:, 1] - bounding_box[2])
points_up = np.copy(points_center)
points_up[:, 1] = bounding_box[3] + (bounding_box[3] - points_up[:, 1])
points = np.append(points_center,
np.append(np.append(points_left,
points_right,
axis=0),
np.append(points_down,
points_up,
axis=0),
axis=0),
axis=0)
# Compute Voronoi
vor = sp.spatial.Voronoi(points)
# Filter regions
regions = []
for region in vor.regions:
flag = True
for index in region:
if index == -1:
flag = False
break
else:
x = vor.vertices[index, 0]
y = vor.vertices[index, 1]
if not(bounding_box[0] - eps <= x and x <= bounding_box[1] + eps and
bounding_box[2] - eps <= y and y <= bounding_box[3] + eps):
flag = False
break
if region != [] and flag:
regions.append(region)
vor.filtered_points = points_center
vor.filtered_regions = regions
return vor
def centroid_region(vertices):
# Polygon's signed area
A = 0
# Centroid's x
C_x = 0
# Centroid's y
C_y = 0
for i in range(0, len(vertices) - 1):
s = (vertices[i, 0] * vertices[i + 1, 1] - vertices[i + 1, 0] * vertices[i, 1])
A = A + s
C_x = C_x + (vertices[i, 0] + vertices[i + 1, 0]) * s
C_y = C_y + (vertices[i, 1] + vertices[i + 1, 1]) * s
A = 0.5 * A
C_x = (1.0 / (6.0 * A)) * C_x
C_y = (1.0 / (6.0 * A)) * C_y
return np.array([[C_x, C_y]])
vor = voronoi(towers, bounding_box)
fig = pl.figure()
ax = fig.gca()
# Plot initial points
ax.plot(vor.filtered_points[:, 0], vor.filtered_points[:, 1], 'b.')
# Plot ridges points
for region in vor.filtered_regions:
vertices = vor.vertices[region, :]
ax.plot(vertices[:, 0], vertices[:, 1], 'go')
# Plot ridges
for region in vor.filtered_regions:
vertices = vor.vertices[region + [region[0]], :]
ax.plot(vertices[:, 0], vertices[:, 1], 'k-')
# Compute and plot centroids
centroids = []
for region in vor.filtered_regions:
vertices = vor.vertices[region + [region[0]], :]
centroid = centroid_region(vertices)
centroids.append(list(centroid[0, :]))
ax.plot(centroid[:, 0], centroid[:, 1], 'r.')
ax.set_xlim([-0.1, 1.1])
ax.set_ylim([-0.1, 1.1])
pl.savefig("bounded_voronoi.png")
sp.spatial.voronoi_plot_2d(vor)
pl.savefig("voronoi.png")
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
4837 次 |
| 最近记录: |