Haskell中组合物的组成

sha*_*har 4 haskell functional-programming functor

我最近正在学习Haskell,而我正在阅读"了解你是一个Haskell"中的Functors,我才知道

  1. ((->)r)采用一个参数的函数也是Functors的一种方式.
  2. 组成(.)相当于fmap

所以根据我的理解,fmap有两个参数.首先是要应用的函数,第二个是函子.

但是,我对这个表达很困惑(.) (.) (.).这是两种成分的组合,具有类型(b -> c) -> (a1 -> a2 -> b) -> (a1 -> a2 -> c)

所以这是我的疑问.第一个(.)有两个参数,第一个是组合函数本身.第二个参数也是组合函数.而组合函数本身并不是算子.那么这是一个有效的表达方式呢?

我相信我在这里遗漏了一些东西.有人可以填补空白并帮助我了解表达方式是否正确?

gsp*_*spr 7

忽略Functor实例((->) r); 这是无关紧要的.这里只有两个问题:类型(.),即

(.) :: (b -> c) -> (a -> b) -> a -> c
Run Code Online (Sandbox Code Playgroud)

,以及函数应用程序是左关联的这一事实.后者意味着与之(.) (.) (.)相同((.) (.)) (.).

让我们首先尝试找到(.) (.)(最左边的那些,如果你愿意的话).让我们写的第一类型(.)(b1 -> c1) -> (a1 -> b1) -> a1 -> c1,第二个作为(b2 -> c2) -> (a2 -> b2) -> a2 -> c2.我们应用第一个到第二个,这给了我们b1现在(b2 -> c2)c1(a2 -> b2) -> a2 -> c2.因此,我们有

(.) (.) :: (a1 -> (b2 -> c2)) -> a1 -> ((a2 -> b2) -> a2 -> c2)
Run Code Online (Sandbox Code Playgroud)

这可以简化为

(.) (.) :: (a1 -> b2 -> c2) -> a1 -> (a2 -> b2) -> a2 -> c2
Run Code Online (Sandbox Code Playgroud)

现在让我们将它应用到最后一个(.)(最右边的一个,如果你愿意的话).如果有签名(b3 -> c3) -> (a3 -> b3) -> a3 -> c3,那么我们可以看到,a1必须(b3 -> c3),b2必须是(a3 -> b3)c2必须a3 -> c3.从而,

((.) (.)) (.) :: (b3 -> c3) -> (a2 -> (a3 -> b3)) -> a2 -> a3 -> c3
Run Code Online (Sandbox Code Playgroud)

这是一样的

((.) (.)) (.) :: (b3 -> c3) -> (a2 -> a3 -> b3) -> (a2 -> a3 -> c3)
Run Code Online (Sandbox Code Playgroud)

如果您进行重命名,这与您在问题中的内容相同.