是否有像switch这样的函数在dplyr :: mutate中运行?

wdk*_*nls 19 r dplyr

我不能在里面使用switch,mutate因为它返回的是整个向量而不仅仅是行.作为一个黑客,我正在使用:

pick <- function(x, v1, v2, v3, v4) {
    ifelse(x == 1, v1,
           ifelse(x == 2, v2,
                  ifelse(x == 3, v3,
                         ifelse(x == 4, v4, NA))))
}
Run Code Online (Sandbox Code Playgroud)

这在内部工作mutate,现在很好,因为我通常选择4件事,但这可能会改变.你能推荐另一种选择吗?

例如:

library(dplyr)
df.faithful <- tbl_df(faithful)
df.faithful$x  <- sample(1:4, 272, rep=TRUE)
df.faithful$y1 <- rnorm(n=272, mean=7, sd=2)
df.faithful$y2 <- rnorm(n=272, mean=5, sd=2)
df.faithful$y3 <- rnorm(n=272, mean=7, sd=1)
df.faithful$y4 <- rnorm(n=272, mean=5, sd=1)
Run Code Online (Sandbox Code Playgroud)

使用pick:

mutate(df.faithful, y = pick(x, y1, y2, y3, y4))
Source: local data frame [272 x 8]

   eruptions waiting x        y1        y2       y3       y4        y
1      3.600      79 1  8.439092 5.7753006 8.319372 5.078558 8.439092
2      1.800      54 2 13.515956 6.1971512 6.343157 4.962349 6.197151
3      3.333      74 4  7.693941 6.8973365 5.406684 5.425404 5.425404
4      2.283      62 4 12.595852 6.9953995 7.864423 3.730967 3.730967
5      4.533      85 3 11.952922 5.1512987 9.177687 5.511899 9.177687
6      2.883      55 3  7.881350 1.0289711 6.304004 3.554056 6.304004
7      4.700      88 4  8.636709 6.3046198 6.788619 5.748269 5.748269
8      3.600      85 1  8.027371 6.3535056 7.152698 7.034976 8.027371
9      1.950      51 1  5.863370 0.1707758 5.750440 5.058107 5.863370
10     4.350      85 1  7.761653 6.2176610 8.348378 1.861112 7.761653
..       ...     ... .       ...       ...      ...      ...      ...
Run Code Online (Sandbox Code Playgroud)

我们看到如果x == 1,我将y1中的值复制到y中,依此类推.这是我想要做的,但我希望能够做到这一点,无论我有4或400列的列表.

试图使用switch:

mutate(df.faithful, y = switch(x, y1, y2, y3, 4))

Error in switch(c(1L, 2L, 4L, 4L, 3L, 3L, 4L, 1L, 1L, 1L, 4L, 3L, 1L,  : 
EXPR must be a length 1 vector
Run Code Online (Sandbox Code Playgroud)

试图使用list:

mutate(df.faithful, y = list(y1, y2, y3, y4)[[x]])
Error in list(c(8.43909205142925, 13.5159559591257, 7.69394050059568,  : 
recursive indexing failed at level 2
Run Code Online (Sandbox Code Playgroud)

试图使用c:

mutate(df.faithful, y = c(y1, y2, y3, y4)[x])
Source: local data frame [272 x 8]

   eruptions waiting x        y1        y2       y3       y4         y
1      3.600      79 1  8.439092 5.7753006 8.319372 5.078558  8.439092
2      1.800      54 2 13.515956 6.1971512 6.343157 4.962349 13.515956
3      3.333      74 4  7.693941 6.8973365 5.406684 5.425404 12.595852
4      2.283      62 4 12.595852 6.9953995 7.864423 3.730967 12.595852
5      4.533      85 3 11.952922 5.1512987 9.177687 5.511899  7.693941
6      2.883      55 3  7.881350 1.0289711 6.304004 3.554056  7.693941
7      4.700      88 4  8.636709 6.3046198 6.788619 5.748269 12.595852
8      3.600      85 1  8.027371 6.3535056 7.152698 7.034976  8.439092
9      1.950      51 1  5.863370 0.1707758 5.750440 5.058107  8.439092
10     4.350      85 1  7.761653 6.2176610 8.348378 1.861112  8.439092
..       ...     ... .       ...       ...      ...      ...       ...
Run Code Online (Sandbox Code Playgroud)

不会产生错误,但行为不符合预期.

小智 26

对OP来说太晚了,但是如果这出现在搜索中......

dplyr v0.5有recode()一个矢量化版本switch(),所以

data_frame(
  x = sample(1:4, 10, replace=TRUE),
  y1 = rnorm(n=10, mean=7, sd=2),
  y2 = rnorm(n=10, mean=5, sd=2),
  y3 = rnorm(n=10, mean=7, sd=1),
  y4 = rnorm(n=10, mean=5, sd=1)
) %>%
mutate(y = recode(x,y1,y2,y3,y4))
Run Code Online (Sandbox Code Playgroud)

按预期生产:

# A tibble: 10 x 6
       x        y1       y2       y3       y4        y
   <int>     <dbl>    <dbl>    <dbl>    <dbl>    <dbl>
1      2  6.950106 6.986780 7.826778 6.317968 6.986780
2      1  5.776381 7.706869 7.982543 5.048649 5.776381
3      2  7.315477 2.213855 6.079149 6.070598 2.213855
4      3  7.461220 5.100436 7.085912 4.440829 7.085912
5      3  5.780493 4.562824 8.311047 5.612913 8.311047
6      3  5.373197 7.657016 7.049352 4.470906 7.049352
7      2  6.604175 9.905151 8.359549 6.430572 9.905151
8      3 11.363914 4.721148 7.670825 5.317243 7.670825
9      3 10.123626 7.140874 6.718351 5.508875 6.718351
10     4  5.407502 4.650987 5.845482 4.797659 4.797659
Run Code Online (Sandbox Code Playgroud)

(也适用于命名的args,包括字符和因子x.)


edd*_*ddi 5

按 的每个值进行操作x。这是data.table版本,我认为可以在以下位置完成类似的操作dplyr

library(data.table)

dt = data.table(x = c(1,1,2,2), a = 1:4, b = 4:7)

dt[, newcol := switch(as.character(x), '1' = a, '2' = b, NA), by = x]
dt
#   x a b newcol
#1: 1 1 4      1
#2: 1 2 5      2
#3: 2 3 6      6
#4: 2 4 7      7
Run Code Online (Sandbox Code Playgroud)


Mar*_*rra 5

您现在可以将dplyr的函数case_whenmutate().

按照您的示例生成数据:

library(dplyr)

df.faithful <- tbl_df(faithful)
df.faithful$x  <- sample(1:4, 272, rep=TRUE)
df.faithful$y1 <- rnorm(n=272, mean=7, sd=2)
df.faithful$y2 <- rnorm(n=272, mean=5, sd=2)
df.faithful$y3 <- rnorm(n=272, mean=7, sd=1)
df.faithful$y4 <- rnorm(n=272, mean=5, sd=1)
Run Code Online (Sandbox Code Playgroud)

现在我们pick()使用case_when以下方法定义一个新函数:

pick2 <- function(x, v1, v2, v3, v4) {
  out = case_when(
    x == 1 ~ v1,
    x == 2 ~ v2,
    x == 3 ~ v3,
    x == 4 ~ v4
  )
  return(out)
}
Run Code Online (Sandbox Code Playgroud)

你会发现你可以完美地使用它mutate()

df.faithful %>% 
  mutate(y = pick2(x, y1, y2, y3, y4))
Run Code Online (Sandbox Code Playgroud)

输出是:

# A tibble: 272 x 8
   eruptions waiting     x    y1    y2    y3    y4     y
       <dbl>   <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
 1      3.6       79     3  8.73  7.23  8.89  4.04  8.89
 2      1.8       54     3  9.97  4.31  7.06  5.05  7.06
 3      3.33      74     1  6.65  7.23  4.46  6.49  6.65
 4      2.28      62     1  6.40  4.39  5.41  3.49  6.40
 5      4.53      85     4  3.96  8.85  7.43  6.51  6.51
 6      2.88      55     4  6.36  8.08  5.82  5.06  5.06
 7      4.7       88     1  5.91  6.47  6.43  5.88  5.91
 8      3.6       85     1  7.77  4.55  6.56  5.05  7.77
 9      1.95      51     4  5.74  6.46  6.95  4.26  4.26
10      4.35      85     1  7.04  1.73  5.71  2.53  7.04
# ... with 262 more rows
Run Code Online (Sandbox Code Playgroud)