如何让Spark使用Kryo序列化对象?

Tao*_*iao 7 serialization kryo apache-spark

我想将一个对象从驱动程序节点传递到RDD所在的其他节点,以便RDD的每个分区都可以访问该对象,如下面的代码片段所示.

object HelloSpark {
    def main(args: Array[String]): Unit = {
        val conf = new SparkConf()
                .setAppName("Testing HelloSpark")
                .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
                .set("spark.kryo.registrator", "xt.HelloKryoRegistrator")

        val sc = new SparkContext(conf)
        val rdd = sc.parallelize(1 to 20, 4)
        val bytes = new ImmutableBytesWritable(Bytes.toBytes("This is a test"))

        rdd.map(x => x.toString + "-" + Bytes.toString(bytes.get) + " !")
            .collect()
            .foreach(println)

        sc.stop
    }
}

// My registrator
class HelloKryoRegistrator extends KryoRegistrator {
    override def registerClasses(kryo: Kryo) = {
        kryo.register(classOf[ImmutableBytesWritable], new HelloSerializer())
    }
}

//My serializer 
class HelloSerializer extends Serializer[ImmutableBytesWritable] {
    override def write(kryo: Kryo, output: Output, obj: ImmutableBytesWritable): Unit = {
        output.writeInt(obj.getLength)
        output.writeInt(obj.getOffset)
        output.writeBytes(obj.get(), obj.getOffset, obj.getLength)
    }

    override def read(kryo: Kryo, input: Input, t: Class[ImmutableBytesWritable]): ImmutableBytesWritable = {
        val length = input.readInt()
        val offset = input.readInt()
        val bytes  = new Array[Byte](length)
        input.read(bytes, offset, length)

        new ImmutableBytesWritable(bytes)
    }
}
Run Code Online (Sandbox Code Playgroud)

在上面的代码片段中,我尝试在Spark中通过Kryo 序列化ImmutableBytesWritable,所以我做了以下操作:

  1. 配置传递给spark上下文的SparkConf实例,即将 " spark.serializer " 设置为" org.apache.spark.serializer.KryoSerializer "并将" spark.kryo.registrator " 设置为" xt.HelloKryoRegistrator ";
  2. 编写一个自定义的Kryo registrator类,我在其中注册了ImmutableBytesWritable类;
  3. ImmutableBytesWritable编写一个序列化器

但是,当我在yarn-client模式下提交我的Spark应用程序时,抛出以下异常:

线程"main"org.apache.spark.SparkException中的异常:org.apache.spark.uxt.ClosureCleaner $. (ClosureCleaner.scala:158)org.apache.spark.SparkContext.clean(SparkContext.scala:1242)atg.apache.spark.rdd.RDD.map(RDD.scala:270)at xt.HelloSpark $ .main (HelloSpark.scala:23)at.HelloSpark.main(HelloSpark.scala)at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)at sun.reflect.在org.apache.spark.deploy.SparkSubmit $ .launch(SparkSubmit.scala:325)的java.lang.reflect.Method.invoke(Method.java:606)中委托MethodAethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43). org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)中的apache.spark.deploy.SparkSubmit $ .main(SparkSubmit.scala:75)引起:java.io.NotSerializableException:org.apache.hadoop.hbase .io.Immutab java.io.ObjectOutputStream.drite上的java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1183)中的java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1547)中的leBytesWritable,java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1508)位于org.apache.spark.serializer的java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:347)的java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1177)中的.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1431). org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:73)中的JavaSerializationStream.writeObject(JavaSerializer.scala:42)位于org.apache.spark.util.ClosureCleaner $ .ensureSerializable(ClosureCleaner.scala:164). ..还有12个

似乎ImmutableBytesWritable不能被Kryo序列化.那么让Spark使用Kryo序列化对象的正确方法是什么?Kryo可以序列化任何类型吗?

Nil*_*esh 1

发生这种情况是因为您ImmutableBytesWritable在闭包中使用了。Spark 尚不支持 Kryo 的闭包序列化(仅支持 RDD 中的对象)。您可以借助它来解决您的问题:

Spark - 任务不可序列化:如何使用调用外部类/对象的复杂映射闭包?

您只需在通过闭包之前序列化对象,然后再反序列化即可。即使您的类不可序列化,这种方法也能发挥作用,因为它在幕后使用 Kryo。你所需要的只是一些咖喱。;)

这是一个示例草图:

def genMapper(kryoWrapper: KryoSerializationWrapper[(Foo => Bar)])
               (foo: Foo) : Bar = {
    kryoWrapper.value.apply(foo)
}
val mapper = genMapper(KryoSerializationWrapper(new ImmutableBytesWritable(Bytes.toBytes("This is a test")))) _
rdd.flatMap(mapper).collectAsMap()

object ImmutableBytesWritable(bytes: Bytes) extends (Foo => Bar) {
    def apply(foo: Foo) : Bar = { //This is the real function }
}
Run Code Online (Sandbox Code Playgroud)