Sha*_*haf 1 macos scala apache-spark
我正在尝试在 Mac 上以独立模式运行一个简单的 Spark 应用程序。
我设法运行./sbin/start-master.sh
来启动主服务器和工作人员。
./bin/spark-shell --master spark://MacBook-Pro.local:7077
也有效,我可以在 Master WebUI 的运行应用程序列表中看到它
现在我正在尝试编写一个简单的 Spark 应用程序。
import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.SparkContext._
object SimpleApp {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("Simple Application")
.setMaster("spark://MacBook-Pro.local:7077")
val sc = new SparkContext(conf)
val logFile = "README.md"
val logData = sc.textFile(logFile, 2).cache()
val numAs = logData.filter(line => line.contains("a")).count()
val numBs = logData.filter(line => line.contains("b")).count()
println("Lines with a: %s, Lines with b: %s".format(numAs, numBs))
}
}
Run Code Online (Sandbox Code Playgroud)
运行这个简单的应用程序会给出错误消息,表明 Master 没有响应
15/02/15 09:47:47 INFO AppClient$ClientActor: Connecting to master spark://MacBook-Pro.local:7077...
15/02/15 09:47:48 WARN ReliableDeliverySupervisor: Association with remote system [akka.tcp://sparkMaster@MacBook-Pro.local:7077] has failed, address is now gated for [5000] ms. Reason is: [Disassociated].
15/02/15 09:48:07 INFO AppClient$ClientActor: Connecting to master spark://MacBook-Pro.local:7077...
15/02/15 09:48:07 WARN ReliableDeliverySupervisor: Association with remote system [akka.tcp://sparkMaster@MacBook-Pro.local:7077] has failed, address is now gated for [5000] ms. Reason is: [Disassociated].
15/02/15 09:48:27 INFO AppClient$ClientActor: Connecting to master spark://MacBook-Pro.local:7077...
15/02/15 09:48:27 WARN ReliableDeliverySupervisor: Association with remote system [akka.tcp://sparkMaster@MacBook-Pro.local:7077] has failed, address is now gated for [5000] ms. Reason is: [Disassociated].
15/02/15 09:48:47 ERROR SparkDeploySchedulerBackend: Application has been killed. Reason: All masters are unresponsive! Giving up.
15/02/15 09:48:47 WARN SparkDeploySchedulerBackend: Application ID is not initialized yet.
15/02/15 09:48:47 ERROR TaskSchedulerImpl: Exiting due to error from cluster scheduler: All masters are unresponsive! Giving up.
Run Code Online (Sandbox Code Playgroud)
知道有什么问题吗?谢谢
您可以在调用时设置主站spark-submit
,或者(正如您在此处所做的那样)通过 显式设置它SparkConf
。尝试按照Spark 配置文档中的示例进行操作,并按如下方式设置 master:
val conf = new SparkConf().setMaster("local[2]")
来自同一页面(解释后面括号中的数字local
):“请注意,我们使用 local[2] 运行,这意味着两个线程 - 表示 \xe2\x80\x9cminimal\xe2\x80\x9d 并行性,这可以帮助检测错误仅当我们在分布式上下文中运行时才存在。”