使用 matplotlib 的内存泄漏

myp*_*me5 5 memory memory-leaks matplotlib

这不是作为错误报告的目的——即使这些泄漏可能是 mpl 错误的结果,请解释问题要求寻求解决方法。

问题很简单:绘制大量数据(使用 plot() 或 scatter()),清除/释放所有内容,垃圾收集,但仍然没有释放几乎所有内存。

Line #    Mem usage    Increment   Line Contents
================================================
391  122.312 MiB    0.000 MiB   @profile
392                             def plot_network_scatterplot(t_sim_stop, spikes_mat, n_cells_per_area, n_cells, basedir_output, condition_idx):
393
394                                  # make network scatterplot
395  122.312 MiB    0.000 MiB        w, h = plt.figaspect(.1/(t_sim_stop/1E3))
396  122.324 MiB    0.012 MiB        fig = mpl.figure.Figure(figsize=(10*w, 10*h))
397  122.328 MiB    0.004 MiB        canvas = FigureCanvas(fig)
398  122.879 MiB    0.551 MiB        ax = fig.add_axes([.01, .1, .98, .8])
399  134.879 MiB   12.000 MiB        edgecolor_vec = np.array([(1., 0., 0.), (0., 0., 1.)])[1-((spikes_mat[:,3]+1)/2).astype(np.int)]
400                                  '''pathcoll = ax.scatter(spikes_mat[:,1],
401                                             spikes_mat[:,0] + n_cells_per_area * (spikes_mat[:,2]-1),
402                                             s=.5,
403                                             c=spikes_mat[:,3],
404                                             edgecolor=edgecolor_vec)'''
405  440.098 MiB  305.219 MiB        pathcoll = ax.plot(np.random.rand(10000000), np.random.rand(10000000))
406  440.098 MiB    0.000 MiB        ax.set_xlim([0., t_sim_stop])
407  440.098 MiB    0.000 MiB        ax.set_ylim([1, n_cells])
408  440.098 MiB    0.000 MiB        plt.xlabel('Time [ms]')
409  440.098 MiB    0.000 MiB        plt.ylabel('Cell ID')
410  440.098 MiB    0.000 MiB        plt.suptitle('Network activity scatterplot')
411                                  #plt.savefig(os.path.join(basedir_output, 'network_scatterplot-[cond=' + str(condition_idx) + '].png'))
412  931.898 MiB  491.801 MiB        canvas.print_figure(os.path.join(basedir_output, 'network_scatterplot-[cond=' + str(condition_idx) + '].png'))
413                                  #fig.canvas.close()
414                                  #pathcoll.set_offsets([])
415                                  #pathcoll.remove()
416  931.898 MiB    0.000 MiB        ax.cla()
417  931.898 MiB    0.000 MiB        ax.clear()
418  931.898 MiB    0.000 MiB        fig.clf()
419  931.898 MiB    0.000 MiB        fig.clear()
420  931.898 MiB    0.000 MiB        plt.clf()
421  932.352 MiB    0.453 MiB        plt.cla()
422  932.352 MiB    0.000 MiB        plt.close(fig)
423  932.352 MiB    0.000 MiB        plt.close()
424  932.352 MiB    0.000 MiB        del fig
425  932.352 MiB    0.000 MiB        del ax
426  932.352 MiB    0.000 MiB        del pathcoll
427  932.352 MiB    0.000 MiB        del edgecolor_vec
428  932.352 MiB    0.000 MiB        del canvas
429  505.094 MiB -427.258 MiB        gc.collect()
430  505.094 MiB    0.000 MiB        plt.close('all')
431  505.094 MiB    0.000 MiB        gc.collect()
Run Code Online (Sandbox Code Playgroud)

我已经尝试了所有清除/释放的多种组合和不同的顺序都无济于事。我试过不使用显式的 fig/canvas 创建,而只是使用 mpl.pyplot,结果相同。

什么办法可以释放这个内存,带着我进来的122.312出去吗?

干杯!

unu*_*tbu 6

亚历克斯·马泰利解释

一般来说,一个进程“将内存还给操作系统”是非常困难的(直到进程终止并且操作系统取回所有内存,当然)因为(在大多数实现中)malloc 返回的内容是从大的块是为了效率,但是如果它的任何部分仍在使用,则整个块都无法返回。”所以你认为内存泄漏可能只是这个的副作用。如果是这样,fork可以解决问题.

此外

确保大量但临时的内存使用在完成后将所有资源返回给系统的唯一真正可靠的方法是让该使用发生在子进程中,该子进程会执行需要内存的工作然后终止。”

因此,您不必尝试清除图形和轴、删除引用和垃圾收集(所有这些都不起作用),而是可以使用在单独的进程中multiprocessing运行plot_network_scatterplot

import multiprocessing as mp

def plot_network_scatterplot(
    t_sim_stop, spikes_mat, n_cells_per_area, n_cells, basedir_output, 
    condition_idx):

    # make network scatterplot
    w, h = plt.figaspect(.1/(t_sim_stop/1E3))
    fig = mpl.figure.Figure(figsize=(10*w, 10*h))
    canvas = FigureCanvas(fig)
    ax = fig.add_axes([.01, .1, .98, .8])
    edgecolor_vec = np.array([(1., 0., 0.), (0., 0., 1.)])[1-((spikes_mat[:,3]+1)/2).astype(np.int)]
    '''pathcoll = ax.scatter(spikes_mat[:,1],
               spikes_mat[:,0] + n_cells_per_area * (spikes_mat[:,2]-1),
               s=.5,
               c=spikes_mat[:,3],
               edgecolor=edgecolor_vec)'''
    pathcoll = ax.plot(np.random.rand(10000000), np.random.rand(10000000))
    ax.set_xlim([0., t_sim_stop])
    ax.set_ylim([1, n_cells])
    plt.xlabel('Time [ms]')
    plt.ylabel('Cell ID')
    plt.suptitle('Network activity scatterplot')
    canvas.print_figure(os.path.join(basedir_output, 'network_scatterplot-[cond=' + str(condition_idx) + '].png'))

def spawn(func, *args):
    proc = mp.Process(target=func, args=args)
    proc.start()
    # wait until proc terminates.
    proc.join()

if __name__ == '__main__':
    spawn(plot_network_scatterplot, t_sim_stop, spikes_mat, n_cells_per_area, 
          n_cells, basedir_output, condition_idx)
Run Code Online (Sandbox Code Playgroud)