gui*_*gis 27 algorithm binary-search circular-buffer
我们希望在复杂度不大于的循环排序数组中搜索给定元素O(log n).
示例:搜索13在{5,9,13,1,3}.
我的想法是将循环数组转换为常规排序数组,然后对结果数组进行二进制搜索,但我的问题是我提出的算法是愚蠢的,它O(n)在最坏的情况下采取:
for(i = 1; i < a.length; i++){
if (a[i] < a[i-1]){
minIndex = i; break;
}
}
Run Code Online (Sandbox Code Playgroud)
那么第i个元素的相应索引将由以下关系确定:
(i + minInex - 1) % a.length
Run Code Online (Sandbox Code Playgroud)
很明显,我的转换(从循环到常规)算法可能需要O(n),所以我们需要一个更好的.
根据ire_and_curses的想法,这是Java中的解决方案:
public int circularArraySearch(int[] a, int low, int high, int x){
//instead of using the division op. (which surprisingly fails on big numbers)
//we will use the unsigned right shift to get the average
int mid = (low + high) >>> 1;
if(a[mid] == x){
return mid;
}
//a variable to indicate which half is sorted
//1 for left, 2 for right
int sortedHalf = 0;
if(a[low] <= a[mid]){
//the left half is sorted
sortedHalf = 1;
if(x <= a[mid] && x >= a[low]){
//the element is in this half
return binarySearch(a, low, mid, x);
}
}
if(a[mid] <= a[high]){
//the right half is sorted
sortedHalf = 2;
if(x >= a[mid] && x<= a[high] ){
return binarySearch(a, mid, high, x);
}
}
// repeat the process on the unsorted half
if(sortedHalf == 1){
//left is sorted, repeat the process on the right one
return circularArraySearch(a, mid, high, x);
}else{
//right is sorted, repeat the process on the left
return circularArraySearch(a, low, mid, x);
}
}
Run Code Online (Sandbox Code Playgroud)
希望这会奏效.
ire*_*ses 51
您可以通过利用数组排序的事实来实现此目的,除了pivot值的特殊情况和它的一个邻居之外.
a[0] < a[mid],则对数组前半部分中的所有值进行排序.a[mid] < a[last],则对数组后半部分中的所有值进行排序.不是很优雅,但是我的头顶 - 只需使用二进制搜索来找到旋转阵列的枢轴,然后再次执行二进制搜索,补偿枢轴的偏移.有点愚蠢地执行两次完整搜索,但它确实满足条件,因为O(log n)+ O(log n)== O(log n).保持简单和愚蠢(tm)!
小智 7
这是一个适用于Java的示例.由于这是一个排序数组,您可以利用它并运行二进制搜索,但需要稍微修改它以满足数据透视表的位置.
该方法如下所示:
private static int circularBinSearch ( int key, int low, int high )
{
if (low > high)
{
return -1; // not found
}
int mid = (low + high) / 2;
steps++;
if (A[mid] == key)
{
return mid;
}
else if (key < A[mid])
{
return ((A[low] <= A[mid]) && (A[low] > key)) ?
circularBinSearch(key, mid + 1, high) :
circularBinSearch(key, low, mid - 1);
}
else // key > A[mid]
{
return ((A[mid] <= A[high]) && (key > A[high])) ?
circularBinSearch(key, low, mid - 1) :
circularBinSearch(key, mid + 1, high);
}
}
Run Code Online (Sandbox Code Playgroud)
现在为了缓解任何担忧,这里有一个很好的小类来验证算法:
public class CircularSortedArray
{
public static final int[] A = {23, 27, 29, 31, 37, 43, 49, 56, 64, 78,
91, 99, 1, 4, 11, 14, 15, 17, 19};
static int steps;
// ---- Private methods ------------------------------------------
private static int circularBinSearch ( int key, int low, int high )
{
... copy from above ...
}
private static void find ( int key )
{
steps = 0;
int index = circularBinSearch(key, 0, A.length-1);
System.out.printf("key %4d found at index %2d in %d steps\n",
key, index, steps);
}
// ---- Static main -----------------------------------------------
public static void main ( String[] args )
{
System.out.println("A = " + Arrays.toString(A));
find(44); // should not be found
find(230);
find(-123);
for (int key: A) // should be found at pos 0..18
{
find(key);
}
}
}
Run Code Online (Sandbox Code Playgroud)
这给你一个输出:
A = [23, 27, 29, 31, 37, 43, 49, 56, 64, 78, 91, 99, 1, 4, 11, 14, 15, 17, 19]
key 44 found at index -1 in 4 steps
key 230 found at index -1 in 4 steps
key -123 found at index -1 in 5 steps
key 23 found at index 0 in 4 steps
key 27 found at index 1 in 3 steps
key 29 found at index 2 in 4 steps
key 31 found at index 3 in 5 steps
key 37 found at index 4 in 2 steps
key 43 found at index 5 in 4 steps
key 49 found at index 6 in 3 steps
key 56 found at index 7 in 4 steps
key 64 found at index 8 in 5 steps
key 78 found at index 9 in 1 steps
key 91 found at index 10 in 4 steps
key 99 found at index 11 in 3 steps
key 1 found at index 12 in 4 steps
key 4 found at index 13 in 5 steps
key 11 found at index 14 in 2 steps
key 14 found at index 15 in 4 steps
key 15 found at index 16 in 3 steps
key 17 found at index 17 in 4 steps
key 19 found at index 18 in 5 steps
Run Code Online (Sandbox Code Playgroud)
你有三个值l,m,h在搜索的低,中,高指标的值.如果你认为你会继续寻找每种可能性:
// normal binary search
l < t < m - search(t,l,m)
m < t < h - search(t,m,h)
// search over a boundary
l > m, t < m - search(t,l,m)
l > m, t > l - search(t,l,m)
m > h, t > m - search(t,m,h)
m > h, t < h - search(t,m,h)
Run Code Online (Sandbox Code Playgroud)
这是一个考虑目标值在哪里,并搜索那一半空间的问题.最多一半的空间将包含在其中,并且很容易确定目标值是否在该一半或另一半中.
这是一个元问题 - 你是否认为二元搜索它是如何经常呈现的 - 在两点之间找到一个值,或者更一般地说是一个抽象搜索空间的重复划分.
| 归档时间: |
|
| 查看次数: |
26670 次 |
| 最近记录: |