Joe*_*oey 5 python parameters statistics
这可能吗?我有一个基本的等式:
Q = (pi*(Ta-Ts))/(((1/ha*Do))+(1/(2*k))*math.log(Do/Di)) * L
where;
ha = 8.14
k = 0.0026
Do = 0.2
Di = 0.003175
L = 0.25
F = 0.0704
Ta = 293
Ts = 113
pi = 3.14159265
Run Code Online (Sandbox Code Playgroud)
我想看看一些变量如何影响最终输出(并构建一个变量灵敏度表).我已经以图表格式管理了这个,但想要一些描述性的统计数据.
例如,我想将Do(外径)作为范围np.arange(0.1,2,100)并保持其他变量不变.
我有以下代码来创建一些这样的图:
def enthalpy_mod1(ambient_temp, LNG_temp, Flow):
ha = 8.14
k = 0.0026
Do = 0.2
Di = 0.003175
L = 0.25
F = Flow
Ta = ambient_temp
Ts = LNG_temp
pi = 3.14159265
Q = (pi*(Ta-Ts))/(((1/ha*Do))+(1/(2*k))*math.log(Do/Di)) * L
e = (Q*3600)/F
results.append(e) # append the result to the empty list
df['Enthalpy Result']= e
plt.plot(Flow, e)
plt.rcParams.update({'font.size': 12})
plt.annotate('Flow rate effects', xy =(0.1,14000))
plt.show()
print df
print Flow_mod(df['Temp'], df['LNG'], df['Flow'])
ambient_temp = [293,293,293,293,293,293,293,293,293,293,293,293,293,293,293,293,293,293]
Flow = np.linspace(0.04, 0.2, 18)
LNG_range = [113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113]
results = []
Run Code Online (Sandbox Code Playgroud)
并将结果放在数据框中......并以此方式绘制.
