最近的对实施Python

mav*_*k93 7 python algorithm closest-points

我试图用分而治之的方法在Python中实现最接近的配对问题,一切似乎工作得很好,除了在某些输入情况下,有一个错误的答案.我的代码如下:

def closestSplitPair(Px,Py,d):
    X = Px[len(Px)-1][0]
    Sy = [item for item in Py if item[0]>=X-d and item[0]<=X+d]
    best,p3,q3 = d,None,None
    for i in xrange(0,len(Sy)-2):
        for j in xrange(1,min(7,len(Sy)-1-i)):
            if dist(Sy[i],Sy[i+j]) < best:
                best = (Sy[i],Sy[i+j])
                p3,q3 = Sy[i],Sy[i+j]
    return (p3,q3,best)
Run Code Online (Sandbox Code Playgroud)

我通过递归函数调用上面的函数,如下所示:

def closestPair(Px,Py): """Px and Py are input arrays sorted according to
their x and y coordinates respectively"""
    if len(Px) <= 3:
        return min_dist(Px)
    else:
        mid = len(Px)/2
        Qx = Px[:mid] ### x-sorted left side of P
        Qy = Py[:mid] ### y-sorted left side of P
        Rx = Px[mid:] ### x-sorted right side of P
        Ry = Py[mid:] ### y-sorted right side of P
        (p1,q1,d1) = closestPair(Qx,Qy)
        (p2,q2,d2) = closestPair(Rx,Ry)
        d = min(d1,d2)
        (p3,q3,d3) = closestSplitPair(Px,Py,d)
        return min((p1,q1,d1),(p2,q2,d2),(p3,q3,d3),key=lambda tup: tup[2])
Run Code Online (Sandbox Code Playgroud)

min_dist(P)对于具有3个或更少元素的列表P,最近对算法的强力实现在哪里,并返回包含最近点对及其距离的元组.

如果我的输入是P = [(0,0),(7,6),(2,20),(12,5),(16,16),(5,8),(19,7),(14,22),(8,19),(7,29),(10,11),(1,13)],那么我的输出是((5,8),(7,6),2.8284271)正确的输出.但是当我的输入是P = [(94, 5), (96, -79), (20, 73), (8, -50), (78, 2), (100, 63), (-14, -69), (99, -8), (-11, -7), (-78, -46)]输出时,我得到的是((78, 2), (94, 5), 16.278820596099706)正确的输出应该是((94, 5), (99, -8), 13.92838827718412)

Pad*_*ham 4

您有两个问题,您忘记调用 dist 来更新最佳距离。但主要问题是发生了多个递归调用,因此当您找到一个更接近的默认分割对时,您最终可能会被覆盖best,p3,q3 = d,None,None。我将最好的对closest_pair作为参数传递给closest_split_pair,因此我不会覆盖该值。

def closest_split_pair(p_x, p_y, delta, best_pair): # <- a parameter
    ln_x = len(p_x)
    mx_x = p_x[ln_x // 2][0]
    s_y = [x for x in p_y if mx_x - delta <= x[0] <= mx_x + delta]
    best = delta
    for i in range(len(s_y) - 1):
        for j in range(1, min(i + 7, (len(s_y) - i))):
            p, q = s_y[i], s_y[i + j]
            dst = dist(p, q)
            if dst < best:
                best_pair = p, q
                best = dst
    return best_pair
Run Code Online (Sandbox Code Playgroud)

Closest_pair 的末尾如下所示:

    p_1, q_1 = closest_pair(srt_q_x, srt_q_y)
    p_2, q_2 = closest_pair(srt_r_x, srt_r_y)
    closest = min(dist(p_1, q_1), dist(p_2, q_2))
    # get min of both and then pass that as an arg to closest_split_pair
    mn = min((p_1, q_1), (p_2, q_2), key=lambda x: dist(x[0], x[1]))
    p_3, q_3 = closest_split_pair(p_x, p_y, closest,mn)
    # either return mn or we have a closer split pair
    return min(mn, (p_3, q_3), key=lambda x: dist(x[0], x[1]))
Run Code Online (Sandbox Code Playgroud)

您还存在一些其他逻辑问题,您的切片逻辑不正确,我对您的代码进行了一些更改,其中暴力只是一个简单的暴力双循环:

def closestPair(Px, Py):
    if len(Px) <= 3:
        return brute(Px)

    mid = len(Px) / 2
    # get left and right half of Px 
    q, r = Px[:mid], Px[mid:]
     # sorted versions of q and r by their x and y coordinates 
    Qx, Qy = [x for x in q if Py and  x[0] <= Px[-1][0]], [x for x in q if x[1] <= Py[-1][1]]
    Rx, Ry = [x for x in r if Py and x[0] <= Px[-1][0]], [x for x in r if x[1] <= Py[-1][1]]
    (p1, q1) = closestPair(Qx, Qy)
    (p2, q2) = closestPair(Rx, Ry)
    d = min(dist(p1, p2), dist(p2, q2))
    mn = min((p1, q1), (p2, q2), key=lambda x: dist(x[0], x[1]))
    (p3, q3) = closest_split_pair(Px, Py, d, mn)
    return min(mn, (p3, q3), key=lambda x: dist(x[0], x[1]))
Run Code Online (Sandbox Code Playgroud)

我今天刚刚完成了算法,因此毫无疑问需要进行一些改进,但这将为您提供正确的答案。