Ott*_*unt 3 simulation system-verilog
关于SystemVerilog(SV)用于编程芯片和模拟SV代码的问题很多.语言结构的这种经济性给我带来了一些困惑:SV参考文献的第9.2.2节说明
"总有四种形式的程序:always,always_comb,always_latch和always_ff.所有形式的always程序在整个模拟过程中不断重复."
当然,这些结构当然也指定了组合逻辑和锁存逻辑的创建.那么SV标准主要是针对模拟,还是由芯片OEM提供给客户建议哪些SV结构会产生实际硬件,就像Altera在这里做的那样?
Altera制造CPLD和FPGA,其中一些并不太昂贵(因此我开始学习SV).由Altera祝福的SV构造子集是可合成的,可以在Quartus中编译成适合下载到芯片的形式.Altera标记其他构造,例如许多断言(上面引用的第16节),"支持.忽略合成".以并发断言为例.
因此,我的结论是,在此处获得的新信息之外,我可以使用例如仅针对测试平台模块的并发断言,但是可以在任何地方使用立即断言.
基本上我试图了解SV如何工作,以及我如何最好地解释上面引用的SV标准.谢谢.
Verilog语言水平很低,因此在为FPGA或ASIC设计硬件时,我们有组合逻辑和顺序逻辑.任何工具中的断言都是真正用于验证的,概念是高级别的,以便能够获得您想要的硬件.
SystemVerilog不仅适用于仿真,而且使用正确的设计子集将允许RTL和后合成门文件在仿真中匹配.编写SystemVerilog设计的方式将决定合成工具生成的内容.只有在您隐含它们时才会创建触发器和锁存器.不同的工具可以不同地优化组合部分,但如果使用最佳实践编写,那么它们应该在功能上都是等同的.
Verilog在一天中提供了设计指南.SystemVerilog LRM不会在可合成组件和验证之间拆分规范,但合成SystemVerilog的非官方指南是一个很好的指南.
关于使用不同always块的问题的一部分.
从Verilog我们有:
always @* // For combinatorial logic
always @(posedge clk) // For flip-flops (sequential) Logic
Run Code Online (Sandbox Code Playgroud)
暗示一个闩锁涉及一个不完整的if/else分支,并且很难说它是一个意外还是实际意图.
//Latch from bug or actually intended?
always @* begin
if (enable) begin
//..
end
end
Run Code Online (Sandbox Code Playgroud)
System verilog保持了always与verilog代码向后兼容的简单性,但增加了三种类型,因此设计人员可以明确设计意图.
always_comb //For Combinatorial logic
always_latch //For implying latches
always_ff //For implying flip-flops (sequential logic)
Run Code Online (Sandbox Code Playgroud)
always_comb比always @*模拟中的触发具有更严格的规则,以进一步最小化RTL到门级仿真不匹配.