Hive:将小写应用于数组

Ste*_*ane 0 java arrays string hive lowercase

在 Hive 中,如何将lower() UDF 应用于字符串数组?或任何一般的 UDF。我不知道如何在选择查询中应用“地图”

rch*_*ang 5

如果你使用的情况是,您要变换孤立的阵列(而不是作为一个表的一部分),那么组合explodelowercollect_list应该做的伎俩。例如(请原谅可怕的执行时间,我在一个动力不足的虚拟机上运行):

hive> SELECT collect_list(lower(val))
    > FROM (SELECT explode(array('AN', 'EXAMPLE', 'ARRAY')) AS val) t;
...
... Lots of MapReduce spam
...
MapReduce Total cumulative CPU time: 4 seconds 10 msec
Ended Job = job_1422453239049_0017
MapReduce Jobs Launched: 
Job 0: Map: 1  Reduce: 1   Cumulative CPU: 4.01 sec   HDFS Read: 283 HDFS Write: 17 SUCCESS
Total MapReduce CPU Time Spent: 4 seconds 10 msec
OK
["an","example","array"]
Time taken: 33.05 seconds, Fetched: 1 row(s)
Run Code Online (Sandbox Code Playgroud)

(注意:用array('AN', 'EXAMPLE', 'ARRAY')您用来生成数组的任何表达式替换上面的查询。

相反,如果您的用例是您的数组存储在 Hive 表的列中,并且您需要对它们应用小写转换,则据我所知,您有两个主要选项:

方式#1:使用的组合explodeLATERAL VIEW到阵列分离。使用lower改造的各个元素,然后collect_list粘上他们重新走到一起。一个带有愚蠢的虚构数据的简单示例:

hive> DESCRIBE foo;
OK
id                          int                                 
data                        array<string>                       
Time taken: 0.774 seconds, Fetched: 2 row(s)
hive> SELECT * FROM foo;
OK
1001        ["ONE","TWO","THREE"]
1002        ["FOUR","FIVE","SIX","SEVEN"]
Time taken: 0.434 seconds, Fetched: 2 row(s)

hive> SELECT
    >   id, collect_list(lower(exploded))
    > FROM
    >   foo LATERAL VIEW explode(data) exploded_table AS exploded
    > GROUP BY id;
...
... Lots of MapReduce spam
...
MapReduce Total cumulative CPU time: 3 seconds 310 msec
Ended Job = job_1422453239049_0014
MapReduce Jobs Launched:
Job 0: Map: 1  Reduce: 1   Cumulative CPU: 3.31 sec   HDFS Read: 358 HDFS Write: 44 SUCCESS
Total MapReduce CPU Time Spent: 3 seconds 310 msec
OK
1001        ["one","two","three"]
1002        ["four","five","six","seven"]
Time taken: 34.268 seconds, Fetched: 2 row(s)
Run Code Online (Sandbox Code Playgroud)

方法#2:编写一个简单的 UDF 来应用转换。就像是:

package my.package_name;

import java.util.ArrayList;
import java.util.List;

import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.Text;

public class LowerArray extends UDF {
  public List<Text> evaluate(List<Text> input) {
    List<Text> output = new ArrayList<Text>();
    for (Text element : input) {
      output.add(new Text(element.toString().toLowerCase()));
    }
    return output;
  }
}
Run Code Online (Sandbox Code Playgroud)

然后直接对数据调用UDF:

hive> ADD JAR my_jar.jar;
Added my_jar.jar to class path
Added resource: my_jar.jar
hive> CREATE TEMPORARY FUNCTION lower_array AS 'my.package_name.LowerArray';
OK
Time taken: 2.803 seconds
hive> SELECT id, lower_array(data) FROM foo;
...
... Lots of MapReduce spam
...
MapReduce Total cumulative CPU time: 2 seconds 760 msec
Ended Job = job_1422453239049_0015
MapReduce Jobs Launched:
Job 0: Map: 1   Cumulative CPU: 2.76 sec   HDFS Read: 358 HDFS Write: 44 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 760 msec
OK  
1001        ["one","two","three"]
1002        ["four","five","six","seven"]
Time taken: 27.243 seconds, Fetched: 2 row(s)
Run Code Online (Sandbox Code Playgroud)

这两种方法之间存在一些权衡。#2 在运行时通常可能比 #1 更有效,因为 #1 中的GROUP BY子句强制缩减阶段,而 UDF 方法则没有。但是,#1 在 HiveQL 中执行所有操作,并且更容易泛化(lower如果需要,您可以在查询中替换为其他类型的字符串转换)。使用 #2 的 UDF 方法,您可能必须为要应用的每种不同类型的转换编写一个新的 UDF。