我使用以下脚本执行轨迹的连续段(xy坐标)的叉积:
In [129]:
def func1(xy, s):
size = xy.shape[0]-2*s
out = np.zeros(size)
for i in range(size):
p1, p2 = xy[i], xy[i+s] #segment 1
p3, p4 = xy[i+s], xy[i+2*s] #segment 2
out[i] = np.cross(p1-p2, p4-p3)
return out
def func2(xy, s):
size = xy.shape[0]-2*s
p1 = xy[0:size]
p2 = xy[s:size+s]
p3 = p2
p4 = xy[2*s:size+2*s]
tmp1 = p1-p2
tmp2 = p4-p3
return tmp1[:, 0] * tmp2[:, 1] - tmp2[:, 0] * tmp1[:, 1]
In [136]:
xy = np.array([[1,2],[2,3],[3,4],[5,6],[7,8],[2,4],[5,2],[9,9],[1,1]])
func2(xy, 2)
Out[136]:
array([ 0, -3, 16, 1, 22])
Run Code Online (Sandbox Code Playgroud)
由于内部循环,func1特别慢,所以我自己重写了交叉产品(func2),这个数字快了几个数量级.
是否可以使用numpy einsum函数进行相同的计算?
einsum仅计算乘积之和,但您可以通过反转 的列tmp2并更改第一列的符号,将叉积硬塞到乘积之和中:
def func3(xy, s):\n size = xy.shape[0]-2*s\n tmp1 = xy[0:size] - xy[s:size+s]\n tmp2 = xy[2*s:size+2*s] - xy[s:size+s]\n tmp2 = tmp2[:, ::-1]\n tmp2[:, 0] *= -1\n return np.einsum('ij,ij->i', tmp1, tmp2)\nRun Code Online (Sandbox Code Playgroud)\n\n但func3比 慢func2。
In [80]: xy = np.tile(xy, (1000, 1))\n\nIn [104]: %timeit func1(xy, 2)\n10 loops, best of 3: 67.5 ms per loop\n\nIn [105]: %timeit func2(xy, 2)\n10000 loops, best of 3: 73.2 \xc2\xb5s per loop\n\nIn [106]: %timeit func3(xy, 2)\n10000 loops, best of 3: 108 \xc2\xb5s per loop\nRun Code Online (Sandbox Code Playgroud)\n\n完整性检查:
\n\nIn [86]: np.allclose(func1(xy, 2), func3(xy, 2))\nOut[86]: True\nRun Code Online (Sandbox Code Playgroud)\n\nfunc2我认为这里失败的原因是因为与仅手动写出总和相比,设置einsum循环两次迭代的成本太昂贵,并且反转和乘法也消耗了一些时间。einsum