线性回归并将结果存储在数据框中

Tre*_*eha 7 r linear-regression lm

我正在对数据框中的一些变量进行线性回归.我希望能够通过分类变量对线性回归进行子集化,对每个分类变量运行线性回归,然后将t-stats存储在数据框中.如果可能的话,我想在没有循环的情况下这样做.

这是我正在尝试做的一个示例:

  a<-  c("a","a","a","a","a",
         "b","b","b","b","b",
         "c","c","c","c","c")     
  b<-  c(0.1,0.2,0.3,0.2,0.3,
         0.1,0.2,0.3,0.2,0.3,
         0.1,0.2,0.3,0.2,0.3)
  c<-  c(0.2,0.1,0.3,0.2,0.4,
         0.2,0.5,0.2,0.1,0.2,
         0.4,0.2,0.4,0.6,0.8)
      cbind(a,b,c)
Run Code Online (Sandbox Code Playgroud)

我可以从运行以下线性回归开始,非常容易地拉出t统计量:

  summary(lm(b~c))$coefficients[2,3]
Run Code Online (Sandbox Code Playgroud)

但是,我希望能够在列a为a,b或c时运行回归.我想将t-stats存储在一个如下所示的表中:

variable t-stat
a        0.9
b        2.4
c        1.1
Run Code Online (Sandbox Code Playgroud)

希望有道理.如果您有任何建议,请告诉我!

ale*_*emm 11

这是使用dplyrtidy()broom包中获得的解决方案. tidy()转换各种统计模型输出(例如lm,glm,anova等等)成整齐数据帧.

library(broom)
library(dplyr)

data <- data_frame(a, b, c)

data %>% 
  group_by(a) %>% 
  do(tidy(lm(b ~ c, data = .))) %>% 
  select(variable = a, t_stat = statistic) %>% 
  slice(2)

#   variable     t_stat
# 1        a  1.6124515
# 2        b -0.1369306
# 3        c  0.8000000  
Run Code Online (Sandbox Code Playgroud)

或者提取两者,拦截的t统计量和斜率项:

data %>% 
  group_by(a) %>% 
  do(tidy(lm(b ~ c, data = .))) %>% 
  select(variable = a, term, t_stat = statistic)

#   variable        term     t_stat
# 1        a (Intercept)  1.2366939
# 2        a           c  1.6124515
# 3        b (Intercept)  2.6325081
# 4        b           c -0.1369306
# 5        c (Intercept)  1.4572335
# 6        c           c  0.8000000
Run Code Online (Sandbox Code Playgroud)


Sve*_*ein 5

您可以使用包中的lmList函数nlme应用于lm数据子集:

# the data
df <- data.frame(a, b, c)

library(nlme)
res <- lmList(b ~ c | a, df, pool = FALSE)
coef(summary(res))
Run Code Online (Sandbox Code Playgroud)

输出:

, , (Intercept)

   Estimate Std. Error  t value   Pr(>|t|)
a 0.1000000 0.08086075 1.236694 0.30418942
b 0.2304348 0.08753431 2.632508 0.07815663
c 0.1461538 0.10029542 1.457233 0.24110393

, , c

     Estimate Std. Error    t value  Pr(>|t|)
a  0.50000000  0.3100868  1.6124515 0.2052590
b -0.04347826  0.3175203 -0.1369306 0.8997586
c  0.15384615  0.1923077  0.8000000 0.4821990
Run Code Online (Sandbox Code Playgroud)

如果只需要t值,可以使用以下命令:

coef(summary(res))[, "t value", -1]
#          a          b          c 
#  1.6124515 -0.1369306  0.8000000  
Run Code Online (Sandbox Code Playgroud)


Ste*_*ven 5

这是对plyr套餐和的投票ddply()

plyrFunc <- function(x){
  mod <- lm(b~c, data = x)
  return(summary(mod)$coefficients[2,3])
  }

tStats <- ddply(dF, .(a), plyrFunc)
tStats
  a         V1
1 a  1.6124515
2 b -0.1369306
3 c  0.6852483
Run Code Online (Sandbox Code Playgroud)