fan*_*nhk 6 scala redis apache-spark
我们在Spark上使用Redis来缓存我们的键值对.这是代码:
import com.redis.RedisClient
val r = new RedisClient("192.168.1.101", 6379)
val perhit = perhitFile.map(x => {
val arr = x.split(" ")
val readId = arr(0).toInt
val refId = arr(1).toInt
val start = arr(2).toInt
val end = arr(3).toInt
val refStr = r.hmget("refStr", refId).get(refId).split(",")(1)
val readStr = r.hmget("readStr", readId).get(readId)
val realend = if(end > refStr.length - 1) refStr.length - 1 else end
val refOneStr = refStr.substring(start, realend)
(readStr, refOneStr, refId, start, realend, readId)
})
Run Code Online (Sandbox Code Playgroud)
但编译器给了我这样的反馈:
Exception in thread "main" org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:166)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:158)
at org.apache.spark.SparkContext.clean(SparkContext.scala:1242)
at org.apache.spark.rdd.RDD.map(RDD.scala:270)
at com.ynu.App$.main(App.scala:511)
at com.ynu.App.main(App.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:328)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:75)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.io.NotSerializableException: com.redis.RedisClient
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1183)
at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1547)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1508)
at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1431)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1177)
at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:347)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:42)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:73)
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:164)
... 12 more
Run Code Online (Sandbox Code Playgroud)
有人可以告诉我如何序列化Redis的数据.谢谢你们.
maa*_*asg 17
在Spark中,RDDs 上的函数(如此map处)被序列化并发送给执行程序进行处理.这意味着这些操作中包含的所有元素都应该是可序列化的.
此处的Redis连接不可序列化,因为它打开与目标DB的TCP连接,这些连接绑定到创建它的机器.
解决方案是在本地执行上下文中在执行程序上创建这些连接.几乎没有办法做到这一点.想到的两个是:
rdd.mapPartitions:允许您一次处理整个分区,因此分摊创建连接的成本)mapPartitions 它更容易,因为它只需要对程序结构进行一些小改动:
val perhit = perhitFile.mapPartitions{partition =>
val r = new RedisClient("192.168.1.101", 6379) // create the connection in the context of the mapPartition operation
val res = partition.map{ x =>
...
val refStr = r.hmget(...) // use r to process the local data
}
r.close // take care of resources
res
}
Run Code Online (Sandbox Code Playgroud)
单例连接管理器可以使用一个对象来建模,该对象包含对连接的惰性引用(注意:可变引用也可以工作).
object RedisConnection extends Serializable {
lazy val conn: RedisClient = new RedisClient("192.168.1.101", 6379)
}
Run Code Online (Sandbox Code Playgroud)
然后,此对象可用于为每个工作JVM实例化1个连接,并用作Serializable操作闭包中的对象.
val perhit = perhitFile.map{x =>
val param = f(x)
val refStr = RedisConnection.conn.hmget(...) // use RedisConnection to get a connection to the local data
}
}
Run Code Online (Sandbox Code Playgroud)
使用单例对象的优点是开销较少,因为JVM只创建一次连接(而不是每个RDD分区一次)
还有一些缺点:
(*)代码用于说明目的.未编译或测试.
| 归档时间: |
|
| 查看次数: |
5463 次 |
| 最近记录: |