aer*_*ite 6 python classification svm nltk naivebayes
我有一个1600000推文的训练数据集.我该如何训练这类巨大的数据.
我尝试了一些东西nltk.NaiveBayesClassifier.如果我跑步,训练需要5天以上.
def extract_features(tweet):
tweet_words = set(tweet)
features = {}
for word in featureList:
features['contains(%s)' % word] = (word in tweet_words)
return features
training_set = nltk.classify.util.apply_features(extract_features, tweets)
NBClassifier = nltk.NaiveBayesClassifier.train(training_set) # This takes lots of time
Run Code Online (Sandbox Code Playgroud)
我该怎么办?
我需要使用SVM和朴素的bayes对我的数据集进行分类.
我想使用的数据集:链接
样本(培训数据集):
Label Tweet
0 url aww bummer you shoulda got david carr third day
4 thankyou for your reply are you coming england again anytime soon
Run Code Online (Sandbox Code Playgroud)
示例(测试数据集):
Label Tweet
4 love lebron url
0 lebron beast but still cheering the til the end
^
I have to predict Label 0/4 only
Run Code Online (Sandbox Code Playgroud)
如何有效地训练这个庞大的数据集?
小智 4
按照有关特征提取的精彩建议,您可以使用 scikit 库中的 tfidvectorizer 从推文中提取重要的单词。使用默认配置,加上简单的 LogisticRegression,它给我 0.8 的准确度。希望有帮助。这是一个关于如何使用它来解决您的问题的示例:
train_df_raw = pd.read_csv('train.csv',header=None, names=['label','tweet'])
test_df_raw = pd.read_csv('test.csv',header=None, names=['label','tweet'])
train_df_raw = train_df_raw[train_df_raw['tweet'].notnull()]
test_df_raw = test_df_raw[test_df_raw['tweet'].notnull()]
test_df_raw = test_df_raw[test_df_raw['label']!=2]
y_train = [x if x==0 else 1 for x in train_df_raw['label'].tolist()]
y_test = [x if x==0 else 1 for x in test_df_raw['label'].tolist()]
X_train = train_df_raw['tweet'].tolist()
X_test = test_df_raw['tweet'].tolist()
print('At vectorizer')
vectorizer = TfidfVectorizer()
X_train = vectorizer.fit_transform(X_train)
print('At vectorizer for test data')
X_test = vectorizer.transform(X_test)
print('at Classifier')
classifier = LogisticRegression()
classifier.fit(X_train, y_train)
predictions = classifier.predict(X_test)
print 'Accuracy:', accuracy_score(y_test, predictions)
confusion_matrix = confusion_matrix(y_test, predictions)
print(confusion_matrix)
Accuracy: 0.8
[[135 42]
[ 30 153]]
Run Code Online (Sandbox Code Playgroud)