在scikit-learn LinearRegression中找到p值(显着性)

elp*_*att 130 python statistics regression numpy scikit-learn

如何找到每个系数的p值(显着性)?

lm = sklearn.linear_model.LinearRegression()
lm.fit(x,y)
Run Code Online (Sandbox Code Playgroud)

JAR*_*ARH 131

这有点矫枉过正,但让我们试一试.首先让我们使用statsmodel来找出p值应该是什么

import pandas as pd
import numpy as np
from sklearn import datasets, linear_model
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm
from scipy import stats

diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target

X2 = sm.add_constant(X)
est = sm.OLS(y, X2)
est2 = est.fit()
print(est2.summary())
Run Code Online (Sandbox Code Playgroud)

我们得到了

                         OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.518
Model:                            OLS   Adj. R-squared:                  0.507
Method:                 Least Squares   F-statistic:                     46.27
Date:                Wed, 08 Mar 2017   Prob (F-statistic):           3.83e-62
Time:                        10:08:24   Log-Likelihood:                -2386.0
No. Observations:                 442   AIC:                             4794.
Df Residuals:                     431   BIC:                             4839.
Df Model:                          10                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const        152.1335      2.576     59.061      0.000     147.071     157.196
x1           -10.0122     59.749     -0.168      0.867    -127.448     107.424
x2          -239.8191     61.222     -3.917      0.000    -360.151    -119.488
x3           519.8398     66.534      7.813      0.000     389.069     650.610
x4           324.3904     65.422      4.958      0.000     195.805     452.976
x5          -792.1842    416.684     -1.901      0.058   -1611.169      26.801
x6           476.7458    339.035      1.406      0.160    -189.621    1143.113
x7           101.0446    212.533      0.475      0.635    -316.685     518.774
x8           177.0642    161.476      1.097      0.273    -140.313     494.442
x9           751.2793    171.902      4.370      0.000     413.409    1089.150
x10           67.6254     65.984      1.025      0.306     -62.065     197.316
==============================================================================
Omnibus:                        1.506   Durbin-Watson:                   2.029
Prob(Omnibus):                  0.471   Jarque-Bera (JB):                1.404
Skew:                           0.017   Prob(JB):                        0.496
Kurtosis:                       2.726   Cond. No.                         227.
==============================================================================
Run Code Online (Sandbox Code Playgroud)

好的,让我们再现一遍.由于我们几乎使用矩阵代数重现线性回归分析,因此它有点过分.但到底是什么.

lm = LinearRegression()
lm.fit(X,y)
params = np.append(lm.intercept_,lm.coef_)
predictions = lm.predict(X)

newX = pd.DataFrame({"Constant":np.ones(len(X))}).join(pd.DataFrame(X))
MSE = (sum((y-predictions)**2))/(len(newX)-len(newX.columns))

# Note if you don't want to use a DataFrame replace the two lines above with
# newX = np.append(np.ones((len(X),1)), X, axis=1)
# MSE = (sum((y-predictions)**2))/(len(newX)-len(newX[0]))

var_b = MSE*(np.linalg.inv(np.dot(newX.T,newX)).diagonal())
sd_b = np.sqrt(var_b)
ts_b = params/ sd_b

p_values =[2*(1-stats.t.cdf(np.abs(i),(len(newX)-1))) for i in ts_b]

sd_b = np.round(sd_b,3)
ts_b = np.round(ts_b,3)
p_values = np.round(p_values,3)
params = np.round(params,4)

myDF3 = pd.DataFrame()
myDF3["Coefficients"],myDF3["Standard Errors"],myDF3["t values"],myDF3["Probabilites"] = [params,sd_b,ts_b,p_values]
print(myDF3)
Run Code Online (Sandbox Code Playgroud)

这给了我们.

    Coefficients  Standard Errors  t values  Probabilites
0       152.1335            2.576    59.061         0.000
1       -10.0122           59.749    -0.168         0.867
2      -239.8191           61.222    -3.917         0.000
3       519.8398           66.534     7.813         0.000
4       324.3904           65.422     4.958         0.000
5      -792.1842          416.684    -1.901         0.058
6       476.7458          339.035     1.406         0.160
7       101.0446          212.533     0.475         0.635
8       177.0642          161.476     1.097         0.273
9       751.2793          171.902     4.370         0.000
10       67.6254           65.984     1.025         0.306
Run Code Online (Sandbox Code Playgroud)

所以我们可以从statsmodel重现值.

  • @famargar我也遇到了所有`nan`s的问题.对我而言,这是因为我的`X`是我的数据样本所以索引关闭了.这会在调用`pd.DataFrame.join()`时导致错误.我做了一个换行,现在似乎工作了:`newX = pd.DataFrame({"Constant":np.ones(len(X))}).join(pd.DataFrame(X.reset_index(drop = True) )))` (3认同)
  • 我认为在p值计算中,应该是`len(newX)-len(X[0])`而不是`len(newX)-len(newX[0])` (3认同)
  • 我的 var_b 都是 Nans 是什么意思?线性代数部分失败是否有任何潜在原因? (2认同)
  • 那么 p 值或显着性在哪里? (2认同)
  • @mLstudent33“概率”列。 (2认同)

ely*_*ase 45

scikit-learn的LinearRegression不会计算此信息,但您可以轻松扩展类来执行此操作:

from sklearn import linear_model
from scipy import stats
import numpy as np


class LinearRegression(linear_model.LinearRegression):
    """
    LinearRegression class after sklearn's, but calculate t-statistics
    and p-values for model coefficients (betas).
    Additional attributes available after .fit()
    are `t` and `p` which are of the shape (y.shape[1], X.shape[1])
    which is (n_features, n_coefs)
    This class sets the intercept to 0 by default, since usually we include it
    in X.
    """

    def __init__(self, *args, **kwargs):
        if not "fit_intercept" in kwargs:
            kwargs['fit_intercept'] = False
        super(LinearRegression, self)\
                .__init__(*args, **kwargs)

    def fit(self, X, y, n_jobs=1):
        self = super(LinearRegression, self).fit(X, y, n_jobs)

        sse = np.sum((self.predict(X) - y) ** 2, axis=0) / float(X.shape[0] - X.shape[1])
        se = np.array([
            np.sqrt(np.diagonal(sse[i] * np.linalg.inv(np.dot(X.T, X))))
                                                    for i in range(sse.shape[0])
                    ])

        self.t = self.coef_ / se
        self.p = 2 * (1 - stats.t.cdf(np.abs(self.t), y.shape[0] - X.shape[1]))
        return self
Run Code Online (Sandbox Code Playgroud)

这里偷来.

您应该在Python中查看statsmodel进行此类统计分析.

  • 好。这不起作用,因为 sse 是一个标量,所以 sse.shape 并没有真正的意义。 (3认同)

Pin*_*_be 13

您可以使用sklearn.feature_selection.f_regression.

点击这里查看scikit-learn页面

  • 不,不要使用 f_regression。每个系数的实际 p 值应来自拟合数据后每个系数的 t 检验。sklearn 中的 f_regression 来自单变量回归。它没有构建模式,只是计算每个变量的 f 分数。与 sklearn 中的 chi2 函数相同这是正确的: import statsmodels.api as sm mod = sm.OLS(Y,X) (5认同)
  • 不要使用这种方法,因为它是不正确的!它执行单变量回归,但您可能需要单个多元回归 (4认同)

小智 10

在多变量回归的情况下,@JARH的答案可能有误。(我没有足够的声誉发表评论。)

在以下行中:

p_values =[2*(1-stats.t.cdf(np.abs(i),(len(newX)-1))) for i in ts_b],

t 值遵循degree的卡方分布len(newX)-1而不是遵循degree的卡方分布len(newX)-len(newX.columns)-1

所以这应该是:

p_values =[2*(1-stats.t.cdf(np.abs(i),(len(newX)-len(newX.columns)-1))) for i in ts_b]

(有关更多详细信息,请参阅OLS 回归的 t 值


小智 9

elyase的答案/sf/answers/1954988801/中的代码实际上不起作用.请注意,sse是一个标量,然后它会尝试迭代它.以下代码是修改后的版本.不是很干净,但我认为它或多或少都有效.

class LinearRegression(linear_model.LinearRegression):

    def __init__(self,*args,**kwargs):
        # *args is the list of arguments that might go into the LinearRegression object
        # that we don't know about and don't want to have to deal with. Similarly, **kwargs
        # is a dictionary of key words and values that might also need to go into the orginal
        # LinearRegression object. We put *args and **kwargs so that we don't have to look
        # these up and write them down explicitly here. Nice and easy.

        if not "fit_intercept" in kwargs:
            kwargs['fit_intercept'] = False

        super(LinearRegression,self).__init__(*args,**kwargs)

    # Adding in t-statistics for the coefficients.
    def fit(self,x,y):
        # This takes in numpy arrays (not matrices). Also assumes you are leaving out the column
        # of constants.

        # Not totally sure what 'super' does here and why you redefine self...
        self = super(LinearRegression, self).fit(x,y)
        n, k = x.shape
        yHat = np.matrix(self.predict(x)).T

        # Change X and Y into numpy matricies. x also has a column of ones added to it.
        x = np.hstack((np.ones((n,1)),np.matrix(x)))
        y = np.matrix(y).T

        # Degrees of freedom.
        df = float(n-k-1)

        # Sample variance.     
        sse = np.sum(np.square(yHat - y),axis=0)
        self.sampleVariance = sse/df

        # Sample variance for x.
        self.sampleVarianceX = x.T*x

        # Covariance Matrix = [(s^2)(X'X)^-1]^0.5. (sqrtm = matrix square root.  ugly)
        self.covarianceMatrix = sc.linalg.sqrtm(self.sampleVariance[0,0]*self.sampleVarianceX.I)

        # Standard erros for the difference coefficients: the diagonal elements of the covariance matrix.
        self.se = self.covarianceMatrix.diagonal()[1:]

        # T statistic for each beta.
        self.betasTStat = np.zeros(len(self.se))
        for i in xrange(len(self.se)):
            self.betasTStat[i] = self.coef_[0,i]/self.se[i]

        # P-value for each beta. This is a two sided t-test, since the betas can be 
        # positive or negative.
        self.betasPValue = 1 - t.cdf(abs(self.betasTStat),df)
Run Code Online (Sandbox Code Playgroud)


Ali*_*aei 6

您可以将scipy用于 p 值。此代码来自 scipy 文档。

>>> from scipy import stats
>>> import numpy as np
>>> x = np.random.random(10)
>>> y = np.random.random(10)
>>> slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
Run Code Online (Sandbox Code Playgroud)

  • 我认为这不适用于适合期间使用的多个向量 (3认同)

Afs*_*iri 6

p_value 在 f 个统计数据中。如果您想获取该值,只需使用以下几行代码:

import statsmodels.api as sm
from scipy import stats

diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target

X2 = sm.add_constant(X)
est = sm.OLS(y, X2)
print(est.fit().f_pvalue)
Run Code Online (Sandbox Code Playgroud)

  • 这不能回答问题,因为您使用的库与提到的库不同。 (6认同)
  • @gented 在什么情况下一种计算方法会比另一种更好? (2认同)

小智 6

An easy way to pull of the p-values is to use statsmodels regression:

import statsmodels.api as sm
mod = sm.OLS(Y,X)
fii = mod.fit()
p_values = fii.summary2().tables[1]['P>|t|']
Run Code Online (Sandbox Code Playgroud)

You get a series of p-values that you can manipulate (for example choose the order you want to keep by evaluating each p-value):

在此处输入图片说明


Rap*_*ael 5

对于单行,您可以使用pingouin.linear_regression函数(免责声明:我是 Pingouin 的创建者),该函数使用 NumPy 数组或 Pandas DataFrame 进行单/多变量回归,例如:

import pingouin as pg
# Using a Pandas DataFrame `df`:
lm = pg.linear_regression(df[['x', 'z']], df['y'])
# Using a NumPy array:
lm = pg.linear_regression(X, y)
Run Code Online (Sandbox Code Playgroud)

输出是一个数据帧,其中包含每个预测变量的 beta 系数、标准误差、T 值、p 值和置信区间,以及拟合的 R^2 和调整后的 R^2。