numpy将排序数组合并到一个新数组?

dar*_*ior 15 python sorting numpy

我们有什么方法可以使用numpy函数做一些像mergesort合并的东西吗?

合并之类的功能:

a = np.array([1,3,5])
b = np.array([2,4,6])
c = merge(a, b) # c == np.array([1,2,3,4,5,6])
Run Code Online (Sandbox Code Playgroud)

我希望通过numpy可以获得大数据的高性能

gg3*_*349 10

您可以使用

from numpy import concatenate, sort

c = concatenate((a,b))
c.sort(kind='mergesort')
Run Code Online (Sandbox Code Playgroud)

我担心你不能做得比这更好,除非你把你自己的排序函数写成python扩展,àla cython.

针对类似问题查看问题,但仅保留合并数组中的唯一值.基准和评论也很有见地.

  • 嗯,也许这是最好的方法。我搜索了很多相关答案,但似乎总是这样...... (2认同)

小智 6

所述sortednp包实现排序numpy的阵列的有效的合并:

import numpy as np
import sortednp
a = np.array([1,3,5])
b = np.array([2,4,6])
c = sortednp.merge(a, b) # c == np.array([1,2,3,4,5,6])
Run Code Online (Sandbox Code Playgroud)

受 Sander 帖子的启发,我使用以下代码测量了 numpy 的归并排序(v1.17.4)、Sander 的答案和 sortednp(v0.2.1)对于不同数组大小和 a 和 b 之间大小的比率:

from timeit import timeit as t
import sortednp as snp
import numpy as np

def numpy_mergesort(a, b):
    c = np.concatenate((a,b))
    c.sort(kind='mergesort')
    return c

def sanders_merge(a, b):
    if len(a) < len(b):
        b, a = a, b
    c = np.empty(len(a) + len(b), dtype=a.dtype)
    b_indices = np.arange(len(b)) + np.searchsorted(a, b)
    a_indices = np.ones(len(c), dtype=bool)
    a_indices[b_indices] = False
    c[b_indices] = b
    c[a_indices] = a
    return c

results = []

for size_factor in range(3):
    for max_digits in range(3, 8):
        size = 10**max_digits
        # size difference of a factor 10 here makes the difference!
        a = np.arange(size // 10**size_factor, dtype=np.int)
        b = np.arange(size, dtype=np.int)
        assert np.array_equal(numpy_mergesort(a, b), sanders_merge(a, b))
        assert np.array_equal(numpy_mergesort(a, b), snp.merge(a, b))
        classic = t(lambda: numpy_mergesort(a, b), number=10)
        sanders = t(lambda: sanders_merge(a, b), number=10)
        snp_result = t(lambda: snp.merge(a, b), number=10)
        results.append((size_factor, max_digits, classic, sanders, snp_result))

text_format = " ".join(["{:<18}"] * 5)
print(text_format.format("log10(size factor)", "log10(max size)", "np mergesort", "Sander's merge", "sortednp"))
table_format = "            ".join(["{:.5f}"] * 5)
for result in results:
    print(table_format.format(*result))
Run Code Online (Sandbox Code Playgroud)

结果表明 sortednp 始终是最快的实现:

log10(size factor) log10(max size)    np mergesort       Sander's merge     sortednp          
0.00000            3.00000            0.00016            0.00062            0.00005
0.00000            4.00000            0.00135            0.00469            0.00029
0.00000            5.00000            0.01160            0.03813            0.00292
0.00000            6.00000            0.14952            0.54160            0.03527
0.00000            7.00000            2.00566            5.91691            0.67119
1.00000            3.00000            0.00005            0.00017            0.00002
1.00000            4.00000            0.00019            0.00058            0.00014
1.00000            5.00000            0.00304            0.00633            0.00137
1.00000            6.00000            0.03743            0.06893            0.01828
1.00000            7.00000            0.62334            1.01523            0.38732
2.00000            3.00000            0.00004            0.00015            0.00002
2.00000            4.00000            0.00012            0.00028            0.00013
2.00000            5.00000            0.00217            0.00275            0.00122
2.00000            6.00000            0.03457            0.03205            0.01524
2.00000            7.00000            0.51307            0.50120            0.34335
Run Code Online (Sandbox Code Playgroud)