如何检查数字是否可以代表主要权力(第n个根是否为素数)

Lak*_*man 5 python algorithm primes number-theory nth-root

我正在尝试这个问题一段时间但一次又一次地得到错误的答案.数字可能非常大<= 2 ^ 2014. 22086. Prime Power Test

关于我的算法的说明:

  1. 对于给定的数字,我正在检查该数字是否可以表示为主要权力的形式.
  2. 因此,检查主要功率的最大限制是log n base 2.
  3. 最后问题减少到找到一个数字的第n个根,如果它是素数,我们有我们的答案,否则检查所有i直到log (n base 2)exit.
  4. 我已经使用了各种优化并测试了大量的测试用例,并且我的所有算法都给出了正确的答案
  5. 但是法官说错了答案.
  6. Spoj有另一个类似的问题,小约束n <= 10 ^ 18,我已经接受了Python和C++(c ++中的最佳解算器)

这是我的python代码请建议我,如果我做错了我不是很精通python所以我的算法有点冗长.提前致谢.

我的算法:

import math
import sys
import fractions
import random
import decimal
write = sys.stdout.write
def sieve(n):
    sqrtn = int(n**0.5)
    sieve = [True] * (n+1)
    sieve[0] = False
    sieve[1] = False
    for i in range(2, sqrtn+1):
        if sieve[i]:
            m = n//i - i
            sieve[i*i:n+1:i] = [False] * (m+1)
    return sieve
def gcd(a, b):
    while b:
        a, b = b, a%b
    return a
def mr_pass(a, s, d, n):
    a_to_power = pow(a, d, n)
    if a_to_power == 1:
        return True
    for i in range(s-1):
        if a_to_power == n - 1:
            return True
        a_to_power = (a_to_power * a_to_power) % n
    return a_to_power == n - 1
isprime=sieve(1000000)
sprime= [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997]
def smooth_num(n):
    c=0
    for a in sprime:
        if(n%a==0):
            c+=1
        if(c>=2):
            return True;
    return False
def is_prime(n):
    if(n<1000000):
        return isprime[n]
    if any((n % p) == 0 for p in sprime):
        return False
    if n==2:
        return True
    d = n - 1
    s = 0
    while d % 2 == 0:
        d >>= 1
        s += 1
    for repeat in range(10):
        a=random.randint(1,n-1)
        if not mr_pass(a, s, d, n):
            return False
    return True
def iroot(n,k):
    hi = 1
    while pow(hi, k) < n:
        hi *= 2
    lo = hi // 2
    while hi - lo > 1:
        mid = (lo + hi) // 2
        midToK = (mid**k)
        if midToK < n:
            lo = mid
        elif n < midToK:
            hi = mid
        else:
            return mid
    if (hi**k) == n:
        return hi
    else:
        return lo
def isqrt(x):
    n = int(x)
    if n == 0:
        return 0
    a, b = divmod(n.bit_length(), 2)
    x = pow(2,(a+b))
    while True:
        y = (x + n//x)>>1
        if y >= x:
            return x
        x = y
maxx=2**1024;minn=2**64
def nth_rootp(n,k):
    return int(round(math.exp(math.log(n)/k),0))
def main():
    for cs in range(int(input())):
        n=int(sys.stdin.readline().strip())
        if(smooth_num(n)):
            write("Invalid order\n")
            continue;
        order = 0;m=0
        power =int(math.log(n,2))
        for i in range(1,power+1):
            if(n<=maxx):
                if i==1:m=n
                elif(i==2):m=isqrt(n)
                elif(i==4):m=isqrt(isqrt(n))
                elif(i==8):m=isqrt(isqrt(isqrt(n)))
                elif(i==16):m=isqrt(isqrt(isqrt(isqrt(n))))
                elif(i==32):m=isqrt(isqrt(isqrt(isqrt(isqrt(n)))))
                elif(i==64):m=isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(n))))))
                elif(i==128):m=isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(n)))))))
                elif(i==256):m=isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(n))))))))
                else:m=int(nth_rootp(n,i))
            else:
                if i==1:m=n
                elif i==2:m=isqrt(n)
                elif(i==4):m=isqrt(isqrt(n))
                elif(i==8):m=isqrt(isqrt(isqrt(n)))
                elif(i==16):m=isqrt(isqrt(isqrt(isqrt(n))))
                elif(i==32):m=isqrt(isqrt(isqrt(isqrt(isqrt(n)))))
                elif(i==64):m=isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(n))))))
                elif(i==128):m=isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(n)))))))
                elif(i==256):m=isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(n))))))))
                else:m=iroot(n,i)
            if m<2:
                order=0
                break
            if(is_prime(m) and n==(m**i)):
                write("%d %d\n"%(m,i))
                order = 1
                break
        if(order==0):
            write("Invalid order\n")
main()
Run Code Online (Sandbox Code Playgroud)

Joh*_*onn 1

这并不是真正的答案,但我没有足够的空间将其写为评论。

所以,如果问题仍然没有解决,你可以尝试对nth_rootp使用以下函数,尽管它有点难看(它只是一个二分查找来找到函数的精确值):

def nth_rootp(n,k):
    r = int(round(math.log(n,2)/k))
    left = 2**(r-1)
    right = 2**(r+1)
    if left**k == n:
        return left
    if right**k == n:
        return right
    while left**k < n and right**k > n:
        tmp = (left + right)/2
        if tmp**k == n:
            return tmp
        if tmp == left or tmp == right:
            return tmp
        if tmp**k < n:
            left = tmp
        else:
            if tmp**k > n:
                right = tmp
Run Code Online (Sandbox Code Playgroud)