cec*_*eco 10 .net c# dry async-await
我有一些关于如何在库中提供相同功能的同步和异步实现的问题.我先问他们然后提供下面的示例代码(实际上相当多,但事实上它很简单).
有没有办法避免违反DRY原则?考虑的实现JsonStreamReader.Read,JsonStreamWriter.Write,JsonStreamWriter.Flush,ProtocolMessenger.Send,ProtocolMessenger.Receive和他们的异步版本.
在对同一方法的同步和异步版本进行单元测试时,是否有办法避免违反DRY原则?我正在使用NUnit,虽然我猜所有框架在这方面应该是相同的.
应该如何实施的方法返回Task或Task<Something>考虑Take 1和Take 2变体ComplexClass.Send和ComplexClass.Receive?哪一个是正确的,为什么?
考虑到不知道库将在何处使用(控制台应用程序,Windows窗体,WPF,ASP.NET),总是在库中包含.ConfigureAwait(false)后是否正确await?
以下是我在第一个问题中提到的代码.
IWriter并且JsonStreamWriter:
public interface IWriter
{
void Write(object obj);
Task WriteAsync(object obj);
void Flush();
Task FlushAsync();
}
public class JsonStreamWriter : IWriter
{
private readonly Stream _stream;
public JsonStreamWriter(Stream stream)
{
_stream = stream;
}
public void Write(object obj)
{
string json = JsonConvert.SerializeObject(obj);
byte[] bytes = Encoding.UTF8.GetBytes(json);
_stream.Write(bytes, 0, bytes.Length);
}
public async Task WriteAsync(object obj)
{
string json = JsonConvert.SerializeObject(obj);
byte[] bytes = Encoding.UTF8.GetBytes(json);
await _stream.WriteAsync(bytes, 0, bytes.Length).ConfigureAwait(false);
}
public void Flush()
{
_stream.Flush();
}
public async Task FlushAsync()
{
await _stream.FlushAsync().ConfigureAwait(false);
}
}
Run Code Online (Sandbox Code Playgroud)
IReader并且JsonStreamReader:
public interface IReader
{
object Read(Type objectType);
Task<object> ReadAsync(Type objectType);
}
public class JsonStreamReader : IReader
{
private readonly Stream _stream;
public JsonStreamReader(Stream stream)
{
_stream = stream;
}
public object Read(Type objectType)
{
byte[] bytes = new byte[1024];
int bytesRead = _stream.Read(bytes, 0, bytes.Length);
string json = Encoding.UTF8.GetString(bytes, 0, bytesRead);
object obj = JsonConvert.DeserializeObject(json, objectType);
return obj;
}
public async Task<object> ReadAsync(Type objectType)
{
byte[] bytes = new byte[1024];
int bytesRead = await _stream.ReadAsync(bytes, 0, bytes.Length).ConfigureAwait(false);
string json = Encoding.UTF8.GetString(bytes, 0, bytesRead);
object obj = JsonConvert.DeserializeObject(json, objectType);
return obj;
}
}
Run Code Online (Sandbox Code Playgroud)
IMessenger并且ProtocolMessenger:
public interface IMessenger
{
void Send(object message);
Task SendAsync(object message);
object Receive();
Task<object> ReceiveAsync();
}
public interface IMessageDescriptor
{
string GetMessageName(Type messageType);
Type GetMessageType(string messageName);
}
public class Header
{
public string MessageName { get; set; }
}
public class ProtocolMessenger : IMessenger
{
private readonly IMessageDescriptor _messageDescriptor;
private readonly IWriter _writer;
private readonly IReader _reader;
public ProtocolMessenger(IMessageDescriptor messageDescriptor, IWriter writer, IReader reader)
{
_messageDescriptor = messageDescriptor;
_writer = writer;
_reader = reader;
}
public void Send(object message)
{
Header header = new Header();
header.MessageName = _messageDescriptor.GetMessageName(message.GetType());
_writer.Write(header);
_writer.Write(message);
_writer.Flush();
}
public async Task SendAsync(object message)
{
Header header = new Header();
header.MessageName = _messageDescriptor.GetMessageName(message.GetType());
await _writer.WriteAsync(header).ConfigureAwait(false);
await _writer.WriteAsync(message).ConfigureAwait(false);
await _writer.FlushAsync().ConfigureAwait(false);
}
public object Receive()
{
Header header = (Header)_reader.Read(typeof(Header));
Type messageType = _messageDescriptor.GetMessageType(header.MessageName);
object message = _reader.Read(messageType);
return message;
}
public async Task<object> ReceiveAsync()
{
Header header = (Header)await _reader.ReadAsync(typeof(Header)).ConfigureAwait(false);
Type messageType = _messageDescriptor.GetMessageType(header.MessageName);
object message = await _reader.ReadAsync(messageType).ConfigureAwait(false);
return message;
}
}
Run Code Online (Sandbox Code Playgroud)
ComplexClass:
public interface ISomeOtherInterface
{
void DoSomething();
}
public class ComplexClass : IMessenger, ISomeOtherInterface
{
private readonly IMessenger _messenger;
private readonly ISomeOtherInterface _someOtherInterface;
public ComplexClass(IMessenger messenger, ISomeOtherInterface someOtherInterface)
{
_messenger = messenger;
_someOtherInterface = someOtherInterface;
}
public void DoSomething()
{
_someOtherInterface.DoSomething();
}
public void Send(object message)
{
_messenger.Send(message);
}
// Take 1
public Task SendAsync(object message)
{
return _messenger.SendAsync(message);
}
// Take 2
public async Task SendAsync(object message)
{
await _messenger.SendAsync(message).ConfigureAwait(false);
}
public object Receive()
{
return _messenger.Receive();
}
// Take 1
public Task<object> ReceiveAsync()
{
return _messenger.ReceiveAsync();
}
// Take 2
public async Task<object> ReceiveAsync()
{
return await _messenger.ReceiveAsync().ConfigureAwait(false);
}
}
Run Code Online (Sandbox Code Playgroud)
i3a*_*non 11
这里的一般答案是,制作相同功能的真实async版本和同步版本需要2种不同的(可能是相似的,可能不是)实现.您可以尝试查找重复的部分并使用基类(或实用程序类)重用它们,但实现方式大多不同.
在许多情况下,人们选择只提供一个版本的API,无论是否异步.例如,用于YouTube API v3的.Net客户端库完全async可以完成.如果你能负担得起(很多人不能)那将是我的建议.
async那些在async上下文.Take 1 (即直接返回任务)最好有两种方式:
async状态机的开销,这增加了非常轻微的性能提升.ConfigureAwait在这种情况下,只影响它之后的代码,在这种情况下,它根本不会.它是否使用它不会影响调用者的代码ConfigureAwait.async库中的代码应该使用ConfigureAwait(false),并且只有在特定需要时才删除它.一般来说,API 应该是异步的或同步的。例如,如果您的实现包括 I/O,它应该是异步的。
也就是说,在某些情况下,您确实希望同时拥有同步和异步 API。例如,如果工作自然是异步的,但需要保留同步 API 以实现向后兼容性。
如果您处于这种情况,我建议您使用布尔参数 hack来最小化重复代码的数量。同步方法上的异步包装器和异步方法上的同步包装器都是反模式。
| 归档时间: |
|
| 查看次数: |
870 次 |
| 最近记录: |