leo*_*on 6 python arrays numpy scipy
假设我有两个numpy数组的形式
x = [[1,2]
[2,4]
[3,6]
[4,NaN]
[5,10]]
y = [[0,-5]
[1,0]
[2,5]
[5,20]
[6,25]]
Run Code Online (Sandbox Code Playgroud)
有没有一种有效的方式来合并它们,就像我一样
xmy = [[0, NaN, -5 ]
[1, 2, 0 ]
[2, 4, 5 ]
[3, 6, NaN]
[4, NaN, NaN]
[5, 10, 20 ]
[6, NaN, 25 ]
Run Code Online (Sandbox Code Playgroud)
我可以使用搜索来实现一个简单的函数来查找索引,但这对于许多数组和大尺寸而言并不优雅且可能效率低下.任何指针都很受欢迎.
请参阅numpy.lib.recfunctions.join_by
它只适用于结构化数组或重组,因此存在一些问题.
首先,您需要至少熟悉结构化数组.如果你不是,请看这里.
import numpy as np
import numpy.lib.recfunctions
# Define the starting arrays as structured arrays with two fields ('key' and 'field')
dtype = [('key', np.int), ('field', np.float)]
x = np.array([(1, 2),
(2, 4),
(3, 6),
(4, np.NaN),
(5, 10)],
dtype=dtype)
y = np.array([(0, -5),
(1, 0),
(2, 5),
(5, 20),
(6, 25)],
dtype=dtype)
# You want an outer join, rather than the default inner join
# (all values are returned, not just ones with a common key)
join = np.lib.recfunctions.join_by('key', x, y, jointype='outer')
# Now we have a structured array with three fields: 'key', 'field1', and 'field2'
# (since 'field' was in both arrays, it renamed x['field'] to 'field1', and
# y['field'] to 'field2')
# This returns a masked array, if you want it filled with
# NaN's, do the following...
join.fill_value = np.NaN
join = join.filled()
# Just displaying it... Keep in mind that as a structured array,
# it has one dimension, where each row contains the 3 fields
for row in join:
print row
Run Code Online (Sandbox Code Playgroud)
这输出:
(0, nan, -5.0)
(1, 2.0, 0.0)
(2, 4.0, 5.0)
(3, 6.0, nan)
(4, nan, nan)
(5, 10.0, 20.0)
(6, nan, 25.0)
Run Code Online (Sandbox Code Playgroud)
希望有所帮助!
Edit1:添加了示例Edit2:真的不应该加入浮点数......将'key'字段更改为int.