che*_*h30 34
从pySpark,它对我有用:
dataframe_mysql = mySqlContext.read.format("jdbc").options(
url="jdbc:mysql://localhost:3306/my_bd_name",
driver = "com.mysql.jdbc.Driver",
dbtable = "my_tablename",
user="root",
password="root").load()
Run Code Online (Sandbox Code Playgroud)
Lia*_*iam 15
使用spark 2.0.x,您可以使用DataFrameReader和DataFrameWriter.使用SparkSession.read访问DataFrameReader并使用Dataset.write访问DataFrameWriter.
假设使用spark-shell.
val prop=new java.util.Properties()
prop.put("user","username")
prop.put("password","yourpassword")
val url="jdbc:mysql://host:port/db_name"
val df=spark.read.jdbc(url,"table_name",prop)
df.show()
Run Code Online (Sandbox Code Playgroud)
val jdbcDF = spark.read
.format("jdbc")
.option("url", "jdbc:mysql:dbserver")
.option("dbtable", "schema.tablename")
.option("user", "username")
.option("password", "password")
.load()
Run Code Online (Sandbox Code Playgroud)
如果要从查询结果而不是表中读取数据.
val sql="""select * from db.your_table where id>1"""
val jdbcDF = spark.read
.format("jdbc")
.option("url", "jdbc:mysql:dbserver")
.option("dbtable", s"( $sql ) t")
.option("user", "username")
.option("password", "password")
.load()
Run Code Online (Sandbox Code Playgroud)
import org.apache.spark.sql.SaveMode
val prop=new java.util.Properties()
prop.put("user","username")
prop.put("password","yourpassword")
val url="jdbc:mysql://host:port/db_name"
//df is a dataframe contains the data which you want to write.
df.write.mode(SaveMode.Append).jdbc(url,"table_name",prop)
Run Code Online (Sandbox Code Playgroud)
小智 14
使用Scala,这对我有用: 使用以下命令:
sudo -u root spark-shell --jars /mnt/resource/lokeshtest/guava-12.0.1.jar,/mnt/resource/lokeshtest/hadoop-aws-2.6.0.jar,/mnt/resource/lokeshtest/aws-java-sdk-1.7.3.jar,/mnt/resource/lokeshtest/mysql-connector-java-5.1.38/mysql-connector-java-5.1.38/mysql-connector-java-5.1.38-bin.jar --packages com.databricks:spark-csv_2.10:1.2.0
import org.apache.spark.sql.SQLContext
val sqlcontext = new org.apache.spark.sql.SQLContext(sc)
val dataframe_mysql = sqlcontext.read.format("jdbc").option("url", "jdbc:mysql://Public_IP:3306/DB_NAME").option("driver", "com.mysql.jdbc.Driver").option("dbtable", "tblage").option("user", "sqluser").option("password", "sqluser").load()
dataframe_mysql.show()
Run Code Online (Sandbox Code Playgroud)
jst*_*ill 11
对于Scala,如果你使用sbt
它也会工作.
在您的build.sbt
文件中:
libraryDependencies ++= Seq(
"org.apache.spark" %% "spark-core" % "1.6.2",
"org.apache.spark" %% "spark-sql" % "1.6.2",
"org.apache.spark" %% "spark-mllib" % "1.6.2",
"mysql" % "mysql-connector-java" % "5.1.12"
)
Run Code Online (Sandbox Code Playgroud)
然后你只需要声明你对驱动程序的使用.
Class.forName("com.mysql.jdbc.Driver").newInstance
val conf = new SparkConf().setAppName("MY_APP_NAME").setMaster("MASTER")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val data = sqlContext.read
.format("jdbc")
.option("url", "jdbc:mysql://<HOST>:3306/<database>")
.option("user", <USERNAME>)
.option("password", <PASSWORD>)
.option("dbtable", "MYSQL_QUERY")
.load()
Run Code Online (Sandbox Code Playgroud)
小智 6
public static void main(String[] args) {
Map<String, String> options = new HashMap<String, String>();
options.put("url","jdbc:postgresql://<DBURL>:<PORT>/<Database>?user=<UserName>&password=<Password>");
options.put("dbtable", "<TableName>");
JavaSparkContext sc = new JavaSparkContext(new SparkConf().setAppName("DBConnection").setMaster("local[*]"));
SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);
// DataFrame jdbcDF = sqlContext.load("jdbc", options).cache();
DataFrame jdbcDF = sqlContext.jdbc(options.get("url"),options.get("dbtable"));
System.out.println("Data------------------->" + jdbcDF.toJSON().first());
Row[] rows = jdbcDF.collect();
System.out.println("Without Filter \n ------------------------------------------------- ");
for (Row row2 : rows) {
System.out.println(row2.toString());
}
System.out.println("Filter Data\n ------------------------------------------------- ");
jdbcDF = jdbcDF.select("agency_id","route_id").where(jdbcDF.col("route_id").$less$eq(3));
rows = jdbcDF.collect();
for (Row row2 : rows) {
System.out.println(row2.toString());
}
}
Run Code Online (Sandbox Code Playgroud)
对于 Java,这对我有用:
@Bean
public SparkConf sparkConf() {
SparkConf sparkConf = new SparkConf()
.setAppName(appName)
.setSparkHome(sparkHome)
.setMaster(masterUri);
return sparkConf;
}
@Bean
public JavaSparkContext javaSparkContext() {
return new JavaSparkContext(sparkConf());
}
@Bean
public SparkSession sparkSession() {
return SparkSession
.builder()
.sparkContext(javaSparkContext().sc())
.appName("Java Spark SQL basic example")
.getOrCreate();
}
Run Code Online (Sandbox Code Playgroud)
Properties properties = new Properties();
properties.put("user", "root");
properties.put("password", "root");
properties.put("driver", "com.mysql.cj.jdbc.Driver");
sparkSession.read()
.jdbc("jdbc:mysql://localhost:3306/books?useSSL=false", "(SELECT books.BOOK_ID as BOOK_ID, books.BOOK_TITLE as BOOK_TITLE, books.BOOK_AUTHOR as BOOK_AUTHOR, borrowers.BORR_NAME as BORR_NAME FROM books LEFT OUTER JOIN borrowers ON books.BOOK_ID = borrowers.BOOK_ID) as t", properties) // join example
.show();
Run Code Online (Sandbox Code Playgroud)
当然,对于 MySQL,我需要连接器:
<!-- https://mvnrepository.com/artifact/mysql/mysql-connector-java -->
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>6.0.6</version>
</dependency>
Run Code Online (Sandbox Code Playgroud)
我得到
+-------+------------------+--------------+---------------+
|BOOK_ID| BOOK_TITLE| BOOK_AUTHOR| BORR_NAME|
+-------+------------------+--------------+---------------+
| 1| Gy?r? kúra|J.R.K. Tolkien| Sára Sarolta|
| 2| Kecske-eledel| Mekk Elek|Maláta Melchior|
| 3| Répás tészta| Vegán Eleazár| null|
| 4|Krumpli és pityóka| Farmer Emília| null|
+-------+------------------+--------------+---------------+
Run Code Online (Sandbox Code Playgroud)
小智 5
对于Java(使用Maven),请在pom.xml文件中添加spark依赖项和sql driver依赖项,
<properties>
<java.version>1.8</java.version>
<spark.version>1.6.3</spark.version>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>6.0.6</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.11</version>
<scope>test</scope>
</dependency>
</dependencies>
Run Code Online (Sandbox Code Playgroud)
示例代码,在本地假设你的mysql所处,数据库名是测试,用户名是根和密码是密码,并在测试数据库的两个表是表1和表2
SparkConf sparkConf = new SparkConf();
SparkContext sc = new SparkContext("local", "spark-mysql-test", sparkConf);
SQLContext sqlContext = new SQLContext(sc);
// here you can run sql query
String sql = "(select * from table1 join table2 on table1.id=table2.table1_id) as test_table";
// or use an existed table directly
// String sql = "table1";
DataFrame dataFrame = sqlContext
.read()
.format("jdbc")
.option("url", "jdbc:mysql://127.0.0.1:3306/test?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true")
.option("user", "root")
.option("password", "password")
.option("dbtable", sql)
.load();
// continue your logical code
......
Run Code Online (Sandbox Code Playgroud)
基于这篇infoobjects 文章,尝试以下操作(假设 Java 或 Scala,不确定这如何与 python 一起使用):
Class.forName("com.mysql.jdbc.Driver")
val myRDD = new JdbcRDD( sc, () =>
DriverManager.getConnection(url,username,password),
"select first_name,last_name,gender from person limit ?, ?",
1,//lower bound
5,//upper bound
2,//number of partitions
r =>
r.getString("last_name") + ", " + r.getString("first_name"))
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
64298 次 |
最近记录: |