如何使用MySQL和Apache Spark?

pan*_*aul 33 mysql apache-spark

我想用Apache Spark和MySQL运行我现有的应用程序.

che*_*h30 34

从pySpark,它对我有用:

dataframe_mysql = mySqlContext.read.format("jdbc").options(
    url="jdbc:mysql://localhost:3306/my_bd_name",
    driver = "com.mysql.jdbc.Driver",
    dbtable = "my_tablename",
    user="root",
    password="root").load()
Run Code Online (Sandbox Code Playgroud)

  • `mySqlContext`应该是`sqlContext` (9认同)
  • ^这只是一个变量。您可以根据需要命名。any_name_of_SQL_Context = SQLContext(sc) (2认同)
  • 对于spark2.x,请使用`dataframe = spark_session.read.format(“ jdbc”)。options(...)。load()` (2认同)

Lia*_*iam 15

使用spark 2.0.x,您可以使用DataFrameReader和DataFrameWriter.使用SparkSession.read访问DataFrameReader并使用Dataset.write访问DataFrameWriter.

假设使用spark-shell.

阅读例子

val prop=new java.util.Properties()
prop.put("user","username")
prop.put("password","yourpassword")
val url="jdbc:mysql://host:port/db_name"

val df=spark.read.jdbc(url,"table_name",prop) 
df.show()
Run Code Online (Sandbox Code Playgroud)

阅读例子2

val jdbcDF = spark.read
  .format("jdbc")
  .option("url", "jdbc:mysql:dbserver")
  .option("dbtable", "schema.tablename")
  .option("user", "username")
  .option("password", "password")
  .load()
Run Code Online (Sandbox Code Playgroud)

来自spark doc

阅读example3

如果要从查询结果而不是表中读取数据.

val sql="""select * from db.your_table where id>1"""
val jdbcDF = spark.read
  .format("jdbc")
  .option("url", "jdbc:mysql:dbserver")
  .option("dbtable",  s"( $sql ) t")
  .option("user", "username")
  .option("password", "password")
  .load()
Run Code Online (Sandbox Code Playgroud)

写例子

import org.apache.spark.sql.SaveMode

val prop=new java.util.Properties()
prop.put("user","username")
prop.put("password","yourpassword")
val url="jdbc:mysql://host:port/db_name"
//df is a dataframe contains the data which you want to write.
df.write.mode(SaveMode.Append).jdbc(url,"table_name",prop)
Run Code Online (Sandbox Code Playgroud)

中文版戳我


小智 14

使用Scala,这对我有用: 使用以下命令:

sudo -u root spark-shell --jars /mnt/resource/lokeshtest/guava-12.0.1.jar,/mnt/resource/lokeshtest/hadoop-aws-2.6.0.jar,/mnt/resource/lokeshtest/aws-java-sdk-1.7.3.jar,/mnt/resource/lokeshtest/mysql-connector-java-5.1.38/mysql-connector-java-5.1.38/mysql-connector-java-5.1.38-bin.jar --packages com.databricks:spark-csv_2.10:1.2.0

import org.apache.spark.sql.SQLContext

val sqlcontext = new org.apache.spark.sql.SQLContext(sc)

val dataframe_mysql = sqlcontext.read.format("jdbc").option("url", "jdbc:mysql://Public_IP:3306/DB_NAME").option("driver", "com.mysql.jdbc.Driver").option("dbtable", "tblage").option("user", "sqluser").option("password", "sqluser").load()

dataframe_mysql.show()
Run Code Online (Sandbox Code Playgroud)


jst*_*ill 11

对于Scala,如果你使用sbt它也会工作.

在您的build.sbt文件中:

libraryDependencies ++= Seq(
    "org.apache.spark" %% "spark-core" % "1.6.2",
    "org.apache.spark" %% "spark-sql" % "1.6.2",
    "org.apache.spark" %% "spark-mllib" % "1.6.2",
    "mysql" % "mysql-connector-java" % "5.1.12"
)
Run Code Online (Sandbox Code Playgroud)

然后你只需要声明你对驱动程序的使用.

Class.forName("com.mysql.jdbc.Driver").newInstance

val conf = new SparkConf().setAppName("MY_APP_NAME").setMaster("MASTER")

val sc = new SparkContext(conf)

val sqlContext = new SQLContext(sc)

val data = sqlContext.read
.format("jdbc")
.option("url", "jdbc:mysql://<HOST>:3306/<database>")
.option("user", <USERNAME>)
.option("password", <PASSWORD>)
.option("dbtable", "MYSQL_QUERY")
.load()
Run Code Online (Sandbox Code Playgroud)

  • 看起来像一个自动完成的失败,com.myself.jdbc.Driver - > com.mysql.jdbc.Driver? (2认同)

小智 6

public static void main(String[] args) {
    Map<String, String> options = new HashMap<String, String>();
    options.put("url","jdbc:postgresql://<DBURL>:<PORT>/<Database>?user=<UserName>&password=<Password>");
    options.put("dbtable", "<TableName>");
    JavaSparkContext sc = new JavaSparkContext(new SparkConf().setAppName("DBConnection").setMaster("local[*]"));
    SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);
    // DataFrame jdbcDF = sqlContext.load("jdbc", options).cache();
    DataFrame jdbcDF = sqlContext.jdbc(options.get("url"),options.get("dbtable"));
    System.out.println("Data------------------->" + jdbcDF.toJSON().first());
    Row[] rows = jdbcDF.collect();
    System.out.println("Without Filter \n ------------------------------------------------- ");
    for (Row row2 : rows) {
        System.out.println(row2.toString());
    }
    System.out.println("Filter Data\n ------------------------------------------------- ");
    jdbcDF = jdbcDF.select("agency_id","route_id").where(jdbcDF.col("route_id").$less$eq(3));
    rows = jdbcDF.collect();
    for (Row row2 : rows) {
        System.out.println(row2.toString());
    }
}
Run Code Online (Sandbox Code Playgroud)


Epi*_*rce 5

对于 Java,这对我有用:

@Bean
public SparkConf sparkConf() {
    SparkConf sparkConf = new SparkConf()
            .setAppName(appName)
            .setSparkHome(sparkHome)
            .setMaster(masterUri);

    return sparkConf;
}

@Bean
public JavaSparkContext javaSparkContext() {
    return new JavaSparkContext(sparkConf());
}

@Bean
public SparkSession sparkSession() {
    return SparkSession
            .builder()
            .sparkContext(javaSparkContext().sc())
            .appName("Java Spark SQL basic example")
            .getOrCreate();
}
Run Code Online (Sandbox Code Playgroud)
Properties properties = new Properties();
        properties.put("user", "root");
        properties.put("password", "root");
        properties.put("driver", "com.mysql.cj.jdbc.Driver");
        sparkSession.read()
                    .jdbc("jdbc:mysql://localhost:3306/books?useSSL=false", "(SELECT books.BOOK_ID as BOOK_ID, books.BOOK_TITLE as BOOK_TITLE, books.BOOK_AUTHOR as BOOK_AUTHOR, borrowers.BORR_NAME as BORR_NAME FROM books LEFT OUTER JOIN borrowers ON books.BOOK_ID = borrowers.BOOK_ID) as t", properties) // join example
                    .show();
Run Code Online (Sandbox Code Playgroud)

当然,对于 MySQL,我需要连接器:

    <!-- https://mvnrepository.com/artifact/mysql/mysql-connector-java -->
    <dependency>
        <groupId>mysql</groupId>
        <artifactId>mysql-connector-java</artifactId>
        <version>6.0.6</version>
    </dependency>
Run Code Online (Sandbox Code Playgroud)

我得到

+-------+------------------+--------------+---------------+
|BOOK_ID|        BOOK_TITLE|   BOOK_AUTHOR|      BORR_NAME|
+-------+------------------+--------------+---------------+
|      1|        Gy?r? kúra|J.R.K. Tolkien|   Sára Sarolta|
|      2|     Kecske-eledel|     Mekk Elek|Maláta Melchior|
|      3|      Répás tészta| Vegán Eleazár|           null|
|      4|Krumpli és pityóka| Farmer Emília|           null|
+-------+------------------+--------------+---------------+
Run Code Online (Sandbox Code Playgroud)


小智 5

对于Java(使用Maven),请在pom.xml文件中添加spark依赖项和sql driver依赖项,

<properties>
    <java.version>1.8</java.version>
    <spark.version>1.6.3</spark.version>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
 <dependencies>
    <dependency>
        <groupId>mysql</groupId>
        <artifactId>mysql-connector-java</artifactId>
        <version>6.0.6</version>
    </dependency>
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-sql_2.10</artifactId>
        <version>${spark.version}</version>
    </dependency>
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-core_2.10</artifactId>
        <version>${spark.version}</version>
    </dependency>

    <dependency>
        <groupId>junit</groupId>
        <artifactId>junit</artifactId>
        <version>4.11</version>
        <scope>test</scope>
    </dependency>
</dependencies>
Run Code Online (Sandbox Code Playgroud)

示例代码,在本地假设你的mysql所处,数据库名测试用户名密码密码,并在测试数据库的两个表是表1表2

SparkConf sparkConf = new SparkConf();
SparkContext sc = new SparkContext("local", "spark-mysql-test", sparkConf);
SQLContext sqlContext = new SQLContext(sc);

// here you can run sql query
String sql = "(select * from table1 join table2 on table1.id=table2.table1_id) as test_table";
// or use an existed table directly
// String sql = "table1";
DataFrame dataFrame = sqlContext
    .read()
    .format("jdbc")
    .option("url", "jdbc:mysql://127.0.0.1:3306/test?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true")
    .option("user", "root")
    .option("password", "password")
    .option("dbtable", sql)
    .load();

// continue your logical code
......
Run Code Online (Sandbox Code Playgroud)


Gáb*_*kos 4

基于这篇infoobjects 文章,尝试以下操作(假设 Java 或 Scala,不确定这如何与 python 一起使用):

  • mysql-connector-java添加到 Spark 集群的路径
  • 初始化驱动程序:Class.forName("com.mysql.jdbc.Driver")
  • 创建JdbcRDD数据源:

val myRDD = new JdbcRDD( sc, () => 
                               DriverManager.getConnection(url,username,password),
                        "select first_name,last_name,gender from person limit ?, ?",
                        1,//lower bound
                        5,//upper bound
                        2,//number of partitions
                        r =>
                          r.getString("last_name") + ", " + r.getString("first_name"))
Run Code Online (Sandbox Code Playgroud)