Rust的功能编程是零成本吗?

Amo*_*mos 6 functional-programming rust

我在Rust中对函数式编程性能进行了一些测试:

extern crate rand; // 0.5.5

use rand::Rng;

fn time(f: impl FnOnce()) -> std::time::Duration {
    let s = std::time::Instant::now();
    f();
    s.elapsed()
}

fn main() {
    let iteration = 10000000;

    let mut rng = rand::thread_rng();
    println!(
        "while: {:?}",
        time(|| {
            let mut i = 0;
            let mut num = 0i64;
            while i < iteration {
                num += rng.gen::<i64>();
                i += 1;
            }
        })
    ); // 29.116528ms

    println!(
        "for: {:?}",
        time(|| {
            let mut num = 0i64;
            for _ in 0..iteration {
                num += rng.gen::<i64>();
            }
        })
    ); // 26.68407ms

    println!(
        "fold: {:?}",
        time(|| {
            rng.gen_iter::<i64>().take(iteration).fold(0, |x, y| x + y);
        })
    ); // 26.065936ms
}
Run Code Online (Sandbox Code Playgroud)

我已经设置了优化标志来编译它.

这三个案例花了几乎相同的时间,这是否意味着Rust中的函数式编程是零成本的?

She*_*ter 9

标准性能警告像往常一样,您应该在您的情况下对代码进行基准测试,并了解权衡取舍.从可理解的代码开始,并在必要时使其更快.

以下是功能,分解并永不内联.我还阻止了随机数生成器的内联,并使迭代计数更小以便以后使用:

extern crate rand; // 0.5.5

use rand::{distributions::Standard, Rng, RngCore};

const ITERATION: usize = 10000;

#[inline(never)]
fn add_manual(mut rng: impl Rng) -> i64 {
    let mut num = 0;

    let mut i = 0;
    while i < ITERATION {
        num += rng.gen::<i64>();
        i += 1;
    }

    num
}

#[inline(never)]
fn add_range(mut rng: impl Rng) -> i64 {
    let mut num = 0;

    for _ in 0..ITERATION {
        num += rng.gen::<i64>();
    }

    num
}

#[inline(never)]
fn add_fold(mut rng: impl Rng) -> i64 {
    rng.sample_iter::<i64, _>(&Standard)
        .take(ITERATION)
        .fold(0i64, |x, y| x + y)
}

#[inline(never)]
fn add_sum(mut rng: impl Rng) -> i64 {
    rng.sample_iter::<i64, _>(&Standard).take(ITERATION).sum()
}

// Prevent inlining the RNG to create easier-to-inspect LLVM IR
struct NoInlineRng<R: Rng>(R);

impl<R: Rng> RngCore for NoInlineRng<R> {
    #[inline(never)]
    fn next_u32(&mut self) -> u32 {
        self.0.next_u32()
    }
    #[inline(never)]
    fn next_u64(&mut self) -> u64 {
        self.0.next_u64()
    }
    #[inline(never)]
    fn fill_bytes(&mut self, dest: &mut [u8]) {
        self.0.fill_bytes(dest)
    }
    #[inline(never)]
    fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand::Error> {
        self.0.try_fill_bytes(dest)
    }
}

fn main() {
    let mut rng = NoInlineRng(rand::thread_rng());
    let a = add_manual(&mut rng);
    let b = add_range(&mut rng);
    let c = add_fold(&mut rng);
    let d = add_sum(&mut rng);

    println!("{}, {}, {}, {}", a, b, c, d);
}
Run Code Online (Sandbox Code Playgroud)

和相应的LLVM IR,来自Rust 1.29.2在发布模式下构建:

; playground::add_manual
; Function Attrs: noinline uwtable
define internal fastcc i64 @_ZN10playground10add_manual17hb7f61676b41e00bfE(i64** dereferenceable(8)) unnamed_addr #4 personality i32 (i32, i32, i64, %"unwind::libunwind::_Unwind_Exception"*, %"unwind::libunwind::_Unwind_Context"*)* @rust_eh_personality {
start:
  br label %bb4

bb3:                                              ; preds = %bb4
  ret i64 %2

bb4:                                              ; preds = %bb4, %start
  %num.09 = phi i64 [ 0, %start ], [ %2, %bb4 ]
  %i.08 = phi i64 [ 0, %start ], [ %3, %bb4 ]
  %rng.val.val = load i64*, i64** %0, align 8
; call <playground::NoInlineRng<R> as rand_core::RngCore>::next_u64
  %1 = tail call fastcc i64 @"_ZN71_$LT$playground..NoInlineRng$LT$R$GT$$u20$as$u20$rand_core..RngCore$GT$8next_u6417h0b95e10cc642939aE"(i64* %rng.val.val)
  %2 = add i64 %1, %num.09
  %3 = add nuw nsw i64 %i.08, 1
  %exitcond = icmp eq i64 %3, 10000
  br i1 %exitcond, label %bb3, label %bb4
}
Run Code Online (Sandbox Code Playgroud)
; playground::add_range
; Function Attrs: noinline uwtable
define internal fastcc i64 @_ZN10playground9add_range17h27ceded9d02ff747E(i64** dereferenceable(8)) unnamed_addr #4 personality i32 (i32, i32, i64, %"unwind::libunwind::_Unwind_Exception"*, %"unwind::libunwind::_Unwind_Context"*)* @rust_eh_personality {
start:
  br label %bb8

bb6:                                              ; preds = %bb8
  ret i64 %3

bb8:                                              ; preds = %bb8, %start
  %num.021 = phi i64 [ 0, %start ], [ %3, %bb8 ]
  %iter.sroa.0.020 = phi i64 [ 0, %start ], [ %1, %bb8 ]
  %1 = add nuw nsw i64 %iter.sroa.0.020, 1
  %rng.val.val = load i64*, i64** %0, align 8
; call <playground::NoInlineRng<R> as rand_core::RngCore>::next_u64
  %2 = tail call fastcc i64 @"_ZN71_$LT$playground..NoInlineRng$LT$R$GT$$u20$as$u20$rand_core..RngCore$GT$8next_u6417h0b95e10cc642939aE"(i64* %rng.val.val)
  %3 = add i64 %2, %num.021
  %exitcond = icmp eq i64 %1, 10000
  br i1 %exitcond, label %bb6, label %bb8
}
Run Code Online (Sandbox Code Playgroud)
; playground::add_sum
; Function Attrs: noinline uwtable
define internal fastcc i64 @_ZN10playground7add_sum17h0910bf39c2bf0430E(i64** dereferenceable(8)) unnamed_addr #4 personality i32 (i32, i32, i64, %"unwind::libunwind::_Unwind_Exception"*, %"unwind::libunwind::_Unwind_Context"*)* @rust_eh_personality {
bb2.i.i.i.i:
  br label %bb2.i.i.i.i.i

bb2.i.i.i.i.i:                                    ; preds = %bb2.i.i.i.i.i, %bb2.i.i.i.i
  %1 = phi i64 [ 10000, %bb2.i.i.i.i ], [ %3, %bb2.i.i.i.i.i ]
  %accum.0.i.i.i.i.i = phi i64 [ 0, %bb2.i.i.i.i ], [ %4, %bb2.i.i.i.i.i ]
  %.val.val.i.i.i.i.i.i = load i64*, i64** %0, align 8, !noalias !33
; call <playground::NoInlineRng<R> as rand_core::RngCore>::next_u64
  %2 = tail call fastcc i64 @"_ZN71_$LT$playground..NoInlineRng$LT$R$GT$$u20$as$u20$rand_core..RngCore$GT$8next_u6417h0b95e10cc642939aE"(i64* %.val.val.i.i.i.i.i.i), !noalias !33
  %3 = add nsw i64 %1, -1
  %4 = add i64 %2, %accum.0.i.i.i.i.i
  %5 = icmp eq i64 %3, 0
  br i1 %5, label %_ZN4core4iter8iterator8Iterator3sum17hcbc4a00f32ac1feeE.exit, label %bb2.i.i.i.i.i

_ZN4core4iter8iterator8Iterator3sum17hcbc4a00f32ac1feeE.exit: ; preds = %bb2.i.i.i.i.i
  ret i64 %4
}
Run Code Online (Sandbox Code Playgroud)

除了位置之外,你可以看到add_manual并且add_range基本相同add.add_sum也是类似的,但它从10000倒计时而不是计数.没有定义add_fold因为编译器已经确定它与完全相同的代码add_sum并将它们组合在一起.

在这种情况下,优化器确实可以使这些基本相同.让我们使用内置的基准测试:

#[bench]
fn bench_add_manual(b: &mut Bencher) {
    b.iter(|| {
        let rng = rand::thread_rng();
        add_manual(rng)
    });
}

#[bench]
fn bench_add_range(b: &mut Bencher) {
    b.iter(|| {
        let rng = rand::thread_rng();
        add_range(rng)
    });
}

#[bench]
fn bench_add_sum(b: &mut Bencher) {
    b.iter(|| {
        let rng = rand::thread_rng();
        add_sum(rng)
    });
}
Run Code Online (Sandbox Code Playgroud)

结果是:

test bench_add_manual ... bench:      28,058 ns/iter (+/- 3,552)
test bench_add_range  ... bench:      28,349 ns/iter (+/- 6,663)
test bench_add_sum    ... bench:      29,807 ns/iter (+/- 2,016)
Run Code Online (Sandbox Code Playgroud)

这对我来说几乎是一样的.我想说,在这种情况下,在这个时间点,性能没有显着差异.但是,这不适用于功能样式中的每个可能的代码.