ora*_*nge 11 python pivot-table pandas
我想将从数据透视表派生的Pandas DataFrame转换为行表示,如下所示.
这就是我所在的地方:
import pandas as pd
import numpy as np
df = pd.DataFrame({
'goods': ['a', 'a', 'b', 'b', 'b'],
'stock': [5, 10, 30, 40, 10],
'category': ['c1', 'c2', 'c1', 'c2', 'c1'],
'date': pd.to_datetime(['2014-01-01', '2014-02-01', '2014-01-06', '2014-02-09', '2014-03-09'])
})
# we don't care about year in this example
df['month'] = df['date'].map(lambda x: x.month)
piv = df.pivot_table(["stock"], "month", ["goods", "category"], aggfunc="sum")
piv = piv.reindex(np.arange(piv.index[0], piv.index[-1] + 1))
piv = piv.ffill(axis=0)
piv = piv.fillna(0)
print piv
Run Code Online (Sandbox Code Playgroud)
结果
stock
goods a b
category c1 c2 c1 c2
month
1 5 0 30 0
2 5 10 30 40
3 5 10 10 40
Run Code Online (Sandbox Code Playgroud)
这就是我想去的地方.
goods category month stock
a c1 1 5
a c1 2 0
a c1 3 0
a c2 1 0
a c2 2 10
a c2 3 0
b c1 1 30
b c1 2 0
b c1 3 10
b c2 1 0
b c2 2 40
b c2 3 0
Run Code Online (Sandbox Code Playgroud)
以前,我用过
piv = piv.stack()
piv = piv.reset_index()
print piv
Run Code Online (Sandbox Code Playgroud)
摆脱多索引,但这导致了这一点,因为我现在转向两列(["goods", "category"]):
month category stock
goods a b
0 1 c1 5 30
1 1 c2 0 0
2 2 c1 5 30
3 2 c2 10 40
4 3 c1 5 10
5 3 c2 10 40
Run Code Online (Sandbox Code Playgroud)
有谁知道如何摆脱列中的多索引并将结果导入示例格式的DataFrame?
>>> piv.unstack().reset_index().drop('level_0', axis=1)
goods category month 0
0 a c1 1 5
1 a c1 2 5
2 a c1 3 5
3 a c2 1 0
4 a c2 2 10
5 a c2 3 10
6 b c1 1 30
7 b c1 2 30
8 b c1 3 10
9 b c2 1 0
10 b c2 2 40
11 b c2 3 40
Run Code Online (Sandbox Code Playgroud)
那么你需要的是将最后一个列名0改为stock.
在我看来melt(又名 unpivot)非常接近您想要做的事情:
In [11]: pd.melt(piv)
Out[11]:
NaN goods category value
0 stock a c1 5
1 stock a c1 5
2 stock a c1 5
3 stock a c2 0
4 stock a c2 10
5 stock a c2 10
6 stock b c1 30
7 stock b c1 30
8 stock b c1 10
9 stock b c2 0
10 stock b c2 40
11 stock b c2 40
Run Code Online (Sandbox Code Playgroud)
这里出现了一个流氓列(股票),列标题在 piv 中是恒定的。如果我们先放下它,熔化就会起作用 OOTB:
In [12]: piv.columns = piv.columns.droplevel(0)
In [13]: pd.melt(piv)
Out[13]:
goods category value
0 a c1 5
1 a c1 5
2 a c1 5
3 a c2 0
4 a c2 10
5 a c2 10
6 b c1 30
7 b c1 30
8 b c1 10
9 b c2 0
10 b c2 40
11 b c2 40
Run Code Online (Sandbox Code Playgroud)
编辑:上面实际上删除了索引,您需要将其设为一列reset_index:
In [21]: pd.melt(piv.reset_index(), id_vars=['month'], value_name='stock')
Out[21]:
month goods category stock
0 1 a c1 5
1 2 a c1 5
2 3 a c1 5
3 1 a c2 0
4 2 a c2 10
5 3 a c2 10
6 1 b c1 30
7 2 b c1 30
8 3 b c1 10
9 1 b c2 0
10 2 b c2 40
11 3 b c2 40
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
19454 次 |
| 最近记录: |