Ste*_*TNT 6 java algorithm artificial-intelligence minmax alpha-beta-pruning
我正在为游戏开发AI,我想使用MinMax算法和Alpha-Beta修剪.
我对它是如何工作有一个粗略的想法,但我仍然无法从头开始编写代码,所以我花了最近两天在网上寻找某种伪代码.
我的问题是,我在网上发现的每个伪代码似乎都是基于找到最佳移动的价值,而我需要返回最佳移动而不是数字.
我当前的代码基于这个伪代码(源代码)
minimax(level, player, alpha, beta){ // player may be "computer" or "opponent"
if (gameover || level == 0)
return score
children = all valid moves for this "player"
if (player is computer, i.e., max's turn){
// Find max and store in alpha
for each child {
score = minimax(level - 1, opponent, alpha, beta)
if (score > alpha) alpha = score
if (alpha >= beta) break; // beta cut-off
}
return alpha
} else (player is opponent, i.e., min's turn)
// Find min and store in beta
for each child {
score = minimax(level - 1, computer, alpha, beta)
if (score < beta) beta = score
if (alpha >= beta) break; // alpha cut-off
}
return beta
}
}
// Initial call with alpha=-inf and beta=inf
minimax(2, computer, -inf, +inf)
Run Code Online (Sandbox Code Playgroud)
正如您所看到的,此代码返回一个数字,我想这需要使一切正常(因为在递归期间使用返回的数字).
所以我认为我可以使用外部变量来存储最佳移动,这就是我改变之前代码的方式:
minimax(level, player, alpha, beta){ // player may be "computer" or "opponent"
if (gameover || level == 0)
return score
children = all valid moves for this "player"
if (player is computer, i.e., max's turn){
// Find max and store in alpha
for each child {
score = minimax(level - 1, opponent, alpha, beta)
if (score > alpha) {
alpha = score
bestMove = current child // ROW THAT I ADDED TO UPDATE THE BEST MOVE
}
if (alpha >= beta) break; // beta cut-off
}
return alpha
} else (player is opponent, i.e., min's turn)
// Find min and store in beta
for each child {
score = minimax(level - 1, computer, alpha, beta)
if (score < beta) beta = score
if (alpha >= beta) break; // alpha cut-off
}
return beta
}
}
// Initial call with alpha=-inf and beta=inf
minimax(2, computer, -inf, +inf)
Run Code Online (Sandbox Code Playgroud)
现在,这对我来说是有意义的,因为我们需要更新最佳动作,只有当玩家轮到你并且移动比之前更好时.
所以,虽然我认为这是正确的(即使我不是100%肯定),源也有一个java实现更新bestMove甚至在这种score < beta情况下,我不明白为什么.
尝试使用该实现导致我的代码选择最佳移动来自对立的玩家,这似乎是不正确的(假设我是黑人玩家,我正在寻找我能做到的最佳动作我期待一个"黑色"的举动,而不是一个"白色"举动.
我不知道我的伪代码(第二个)是否是使用带有alpha-beta修剪的MinMax找到最佳移动的正确方法,或者我是否需要在分数<beta情况下更新最佳移动.
如果你愿意的话,请随意提出任何新的和更好的伪代码,我没有任何约束,如果它比我的更好,我不介意重写一些代码.
编辑:
由于我无法理解回复,我想也许问题不会问我想知道什么,所以我想在这里写得更好.
只要我想为一个玩家获得最佳动作,并且每次我需要一个新动作时,这个玩家(即最大化者)都会被传递给MinMax函数(这样就可以minmax(2, black, a, b)返回黑色玩家的最佳动作,同时minmax(2, white, a ,b)返回对于白人玩家来说最好的一个),你如何改变第一个伪代码(或源代码中的java实现)来存储这个给定的最佳移动?
编辑2:
让我们看看我们是否可以这样做.
这是我的实施,请你告诉我它是否正确?
//PlayerType is an enum with just White and Black values, opponent() returns the opposite player type
protected int minMax(int alpha, int beta, int maxDepth, PlayerType player) {
if (!canContinue()) {
return 0;
}
ArrayList<Move> moves = sortMoves(generateLegalMoves(player));
Iterator<Move> movesIterator = moves.iterator();
int value = 0;
boolean isMaximizer = (player.equals(playerType)); // playerType is the player used by the AI
if (maxDepth == 0 || board.isGameOver()) {
value = evaluateBoard();
return value;
}
while (movesIterator.hasNext()) {
Move currentMove = movesIterator.next();
board.applyMove(currentMove);
value = minMax(alpha, beta, maxDepth - 1, player.opponent());
board.undoLastMove();
if (isMaximizer) {
if (value > alpha) {
selectedMove = currentMove;
alpha = value;
}
} else {
if (value < beta) {
beta = value;
}
}
if (alpha >= beta) {
break;
}
}
return (isMaximizer) ? alpha : beta;
}
Run Code Online (Sandbox Code Playgroud)
编辑3:
基于@ Codor的回答/评论的新实现
private class MoveValue {
public Move move;
public int value;
public MoveValue() {
move = null;
value = 0;
}
public MoveValue(Move move, int value) {
this.move = move;
this.value = value;
}
@Override
public String toString() {
return "MoveValue{" + "move=" + move + ", value=" + value + '}';
}
}
protected MoveValue minMax(int alpha, int beta, int maxDepth, PlayerType player) {
if (!canContinue()) {
return new MoveValue();
}
ArrayList<Move> moves = sortMoves(generateLegalMoves(player));
Iterator<Move> movesIterator = moves.iterator();
MoveValue moveValue = new MoveValue();
boolean isMaximizer = (player.equals(playerType));
if (maxDepth == 0 || board.isGameOver()) {
moveValue.value = evaluateBoard();
return moveValue;
}
while (movesIterator.hasNext()) {
Move currentMove = movesIterator.next();
board.applyMove(currentMove);
moveValue = minMax(alpha, beta, maxDepth - 1, player.opponent());
board.undoLastMove();
if (isMaximizer) {
if (moveValue.value > alpha) {
selectedMove = currentMove;
alpha = moveValue.value;
}
} else {
if (moveValue.value < beta) {
beta = moveValue.value;
selectedMove = currentMove;
}
}
if (alpha >= beta) {
break;
}
}
return (isMaximizer) ? new MoveValue(selectedMove, alpha) : new MoveValue(selectedMove, beta);
}
Run Code Online (Sandbox Code Playgroud)
我不知道我是否做对了,或者我做错了什么,但我回到了问题时我遇到的问题:
调用minMax(Integer.MIN_VALUE, Integer.MAX_VALUE, 1, PlayerType.Black)返回一个只能由白人玩家完成的移动,这不是我需要的.
对于给定的球员,我需要最好的举动,而不是整板的最佳举动.
经过一些研究和大量时间浪费解决这个问题后,我想出了这个似乎有用的解决方案.
private class MoveValue {
public double returnValue;
public Move returnMove;
public MoveValue() {
returnValue = 0;
}
public MoveValue(double returnValue) {
this.returnValue = returnValue;
}
public MoveValue(double returnValue, Move returnMove) {
this.returnValue = returnValue;
this.returnMove = returnMove;
}
}
protected MoveValue minMax(double alpha, double beta, int maxDepth, MarbleType player) {
if (!canContinue()) {
return new MoveValue();
}
ArrayList<Move> moves = sortMoves(generateLegalMoves(player));
Iterator<Move> movesIterator = moves.iterator();
double value = 0;
boolean isMaximizer = (player.equals(playerType));
if (maxDepth == 0 || board.isGameOver()) {
value = evaluateBoard();
return new MoveValue(value);
}
MoveValue returnMove;
MoveValue bestMove = null;
if (isMaximizer) {
while (movesIterator.hasNext()) {
Move currentMove = movesIterator.next();
board.applyMove(currentMove);
returnMove = minMax(alpha, beta, maxDepth - 1, player.opponent());
board.undoLastMove();
if ((bestMove == null) || (bestMove.returnValue < returnMove.returnValue)) {
bestMove = returnMove;
bestMove.returnMove = currentMove;
}
if (returnMove.returnValue > alpha) {
alpha = returnMove.returnValue;
bestMove = returnMove;
}
if (beta <= alpha) {
bestMove.returnValue = beta;
bestMove.returnMove = null;
return bestMove; // pruning
}
}
return bestMove;
} else {
while (movesIterator.hasNext()) {
Move currentMove = movesIterator.next();
board.applyMove(currentMove);
returnMove = minMax(alpha, beta, maxDepth - 1, player.opponent());
board.undoLastMove();
if ((bestMove == null) || (bestMove.returnValue > returnMove.returnValue)) {
bestMove = returnMove;
bestMove.returnMove = currentMove;
}
if (returnMove.returnValue < beta) {
beta = returnMove.returnValue;
bestMove = returnMove;
}
if (beta <= alpha) {
bestMove.returnValue = alpha;
bestMove.returnMove = null;
return bestMove; // pruning
}
}
return bestMove;
}
}
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
20452 次 |
| 最近记录: |