如何从R中的分组数据帧规范化子组

kar*_*ski 6 r dplyr

我有一个数据框,有两个数字变量fatcontent和saltcontent加上两个因子变量cond和spice描述不同的处理.在该数据框中,对数值变量的每次测量取两次.

a <- data.frame(cond = rep(c("uncooked", "fried", "steamed", "baked", "grilled"),
                       each = 2, times = 3),
                spice = rep(c("none", "chilli", "basil"), each = 10),
                fatcontent = c(4, 5, 6828, 7530, 6910, 7132, 5885, 613, 2845, 2867,
                               25, 18, 2385, 33227, 4233, 4023, 953, 1025, 4465, 5016,
                               5, 5, 10235, 12545, 5511, 5111, 596, 585, 4012, 3633),
                saltcontent = c(2, 5, 4733, 5500, 5724, 15885, 14885, 217, 193, 148,
                                6, 4, 26738, 24738, 22738, 23738, 267, 256, 1121, 1558,
                                1, 1, 21738, 20738, 26738, 27738, 195, 202, 129, 131)
                )
Run Code Online (Sandbox Code Playgroud)

现在,我希望通过未烹饪条件的平均值来表示每个香料组的数值变量(在这种情况下意味着除).
例如$ a spice =="none"

       cond  spice fatcontent saltcontent  
1  uncooked   none          4           2  
2  uncooked   none          5           5  
3     fried   none       6828        4733  
4     fried   none       7530        5500  
5   steamed   none       6910        5724  
6   steamed   none       7132       15885  
7     baked   none       5885       14885  
8     baked   none        613         217  
9   grilled   none       2845         193  
10  grilled   none       2867         148   
Run Code Online (Sandbox Code Playgroud)

正常化后:

       cond spice   fatcontent  saltcontent
1  uncooked  none    0.8888889    0.5714286
2  uncooked  none    1.1111111    1.4285714
3     fried  none 1517.3333333 1352.2857143
4     fried  none 1673.3333333 1571.4285714
5   steamed  none 1535.5555556 1635.4285714
6   steamed  none 1584.8888889 4538.5714286
7     baked  none 1307.7777778 4252.8571429
8     baked  none  136.2222222   62.0000000
9   grilled  none  632.2222222   55.1428571
10  grilled  none  637.1111111   42.2857143
Run Code Online (Sandbox Code Playgroud)

我的问题是如何为数据框中的所有组和变量执行此操作?我假设我可以使用dplyr包,但我不确定什么是最好的方法.我感谢任何帮助!

tal*_*lat 5

规范化数据的一种简洁方法是在均值计算中包含“未煮过的”条件,这样您就不需要过滤、汇总、连接和重新计算。这样做mutate_each意味着你只需要输入一次。

group_by(a, spice) %>%
  mutate_each(funs(./mean(.[cond == "uncooked"])), -cond)

#Source: local data frame [30 x 4]
#Groups: spice
#
#       cond  spice   fatcontent  saltcontent
#1  uncooked   none    0.8888889 5.714286e-01
#2  uncooked   none    1.1111111 1.428571e+00
#3     fried   none 1517.3333333 1.352286e+03
#4     fried   none 1673.3333333 1.571429e+03
#5   steamed   none 1535.5555556 1.635429e+03
#6   steamed   none 1584.8888889 4.538571e+03
#7     baked   none 1307.7777778 4.252857e+03
#8     baked   none  136.2222222 6.200000e+01
#9   grilled   none  632.2222222 5.514286e+01
#10  grilled   none  637.1111111 4.228571e+01
# ... etc
Run Code Online (Sandbox Code Playgroud)


jaz*_*rro 4

我想这就是你所追求的。您想要使用未煮熟的数据点找到每种香料条件的平均值。这是我第一步所做的事情。然后,我想将fatmeansaltmean添加ana到您的数据框中,a. 如果您的数据确实很大,这可能不是一种有效利用内存的方法。但是,我曾经left_join合并anaa。然后,我mutate对每种香料条件进行了划分。最后,我删除了两列来使用 整理结果select

### Find mean for each spice condition using uncooked data points                
ana <- group_by(filter(a, cond == "uncooked"), spice) %>%
       summarise(fatmean = mean(fatcontent), saltmean = mean(saltcontent)) 

 #   spice fatmean saltmean
 #1  basil     5.0      1.0
 #2 chilli    21.5      5.0
 #3   none     4.5      3.5

left_join(a, ana, by = "spice") %>%
group_by(spice) %>%
mutate(fatcontent = fatcontent / fatmean,
       saltcontent = saltcontent / saltmean) %>%
select(-c(fatmean, saltmean))

# A part of the results
#       cond spice   fatcontent  saltcontent
#1  uncooked  none    0.8888889    0.5714286
#2  uncooked  none    1.1111111    1.4285714
#3     fried  none 1517.3333333 1352.2857143
#4     fried  none 1673.3333333 1571.4285714
#5   steamed  none 1535.5555556 1635.4285714
#6   steamed  none 1584.8888889 4538.5714286
#7     baked  none 1307.7777778 4252.8571429
#8     baked  none  136.2222222   62.0000000
#9   grilled  none  632.2222222   55.1428571
#10  grilled  none  637.1111111   42.2857143
Run Code Online (Sandbox Code Playgroud)

如果你在一个管道中完成所有的事情,它会是这样的:

group_by(filter(a, cond == "uncooked"), spice) %>%
    summarise(fatmean = mean(fatcontent), saltmean = mean(saltcontent)) %>%
    left_join(a, ., by = "spice") %>% #right_join is possible with the dev dplyr
    group_by(spice) %>%
    mutate(fatcontent = fatcontent / fatmean,
           saltcontent = saltcontent / saltmean) %>%
    select(-c(fatmean, saltmean))
Run Code Online (Sandbox Code Playgroud)