通过使用igraph(R)组合入射顶点的属性来创建边缘属性

sah*_*ang 2 attributes r igraph

对于图中的每个边,我想添加一个数值属性(权重),它是事件顶点的属性(概率)的乘积.我可以通过循环边缘来做到这一点; 那是:

    for (i in E(G)) {
      ind <- V(G)[inc(i)]
      p <- get.vertex.attribute(G, name = "prob", index=ind)
      E(G)[i]$weight <- prod(p)
    }
Run Code Online (Sandbox Code Playgroud)

但是,这对于我的图表来说速度很慢(| V |〜= 20,000和| E |〜= 200,000).有没有更快的方法来执行此操作?

Gab*_*rdi 5

这可能是最快的解决方案.关键是矢量化.

library(igraph)
G <- graph.full(45)
set.seed(1)
V(G)$prob <- pnorm(vcount(G))

## Original solution
system.time(
  for (i in E(G)) {
    ind <- V(G)[inc(i)]
    p <- get.vertex.attribute(G, name = "prob", index=ind)
    E(G)[i]$wt.1 <- prod(p)
  }
)
#>    user  system elapsed 
#>   1.776   0.011   1.787 

## sapply solution
system.time(
  E(G)$wt.2 <- sapply(E(G), function(e) prod(V(G)[inc(e)]$prob))
)
#>    user  system elapsed 
#>   1.275   0.003   1.279 

## vectorized solution 
system.time({
  el <- get.edgelist(G)
  E(G)$wt.3 <- V(G)[el[, 1]]$prob * V(G)[el[, 2]]$prob
})
#>    user  system elapsed 
#>   0.003   0.000   0.003 

## are they the same?
identical(E(G)$wt.1, E(G)$wt.2)
#> [1] TRUE
identical(E(G)$wt.1, E(G)$wt.3)
#> [1] TRUE
Run Code Online (Sandbox Code Playgroud)

矢量化解决方案似乎快了大约500倍,尽管需要更多更好的测量来更精确地评​​估它.