puLP求解器错误

ana*_*nar 4 python pulp coin-or-cbc

我正在尝试解决puLP(Python)中的MILP,并且不断收到以下错误:

Traceback (most recent call last):
  File "main_lp.py", line 63, in <module>
    ans = solve_lp(C)
  File "/home/ashwin/Documents/Williams/f2014/math317_or/project/solve_lp.py", line 36, in solve_lp
    prob.solve()
  File "/usr/local/lib/python2.7/dist-packages/PuLP-1.5.6-py2.7.egg/pulp/pulp.py", line 1619, in solve
    status = solver.actualSolve(self, **kwargs)
  File "/usr/local/lib/python2.7/dist-packages/PuLP-1.5.6-py2.7.egg/pulp/solvers.py", line 1283, in actualSolve
    return self.solve_CBC(lp, **kwargs)
  File "/usr/local/lib/python2.7/dist-packages/PuLP-1.5.6-py2.7.egg/pulp/solvers.py", line 1346, in solve_CBC
    raise PulpSolverError("Pulp: Error while executing "+self.path)
pulp.solvers.PulpSolverError: Pulp: Error while executing /usr/local/lib/python2.7/dist-packages/PuLP-1.5.6-py2.7.egg/pulp/solverdir/cbc-32
Run Code Online (Sandbox Code Playgroud)

对于我的线性编程问题,我试图将不同向量的总和作为约束,并且我认为我一定做错了这个问题,因为一个更简单的问题可以解决。我已经附上了代码(C是一个N×N numpy数组)。

def solve_lp(C):
    N = len(C)
    prob=LpProblem('Scheduling',LpMinimize)

    X = [[LpVariable('X' + str(i+1) + str(j+1), 0, C[i,j],LpBinary)
          for j in range(N)] for i in range(N)]
    X = np.array(X)
    X_o = [LpVariable('X0' + str(i), 0, None, LpBinary) for i in range(N)]
    X_t = [LpVariable('X' + str(i) + 't', 0, None, LpBinary) for i in range(N)]

    # Objective Function                                                                                                                                                
    ones_vec = list(np.ones(len(X_o)))
    prob += lpDot(ones_vec,X_o), 'Minimize Buses'

    # Constraints                                                                                                                                                       
    for i in range(N):
        row = list(X[i,:]) + [X_t[i]]
        ones_vec = list(np.ones(len(row)))
        prob += lpDot(ones_vec, row) == 1, 'Only one destination for ' + str(i)

    for j in range(N):
        col = list(X[:,j]) + [X_o[j]]
        ones_vec = list(np.ones(len(col)))
        prob += lpDot(ones_vec,col) == 1, 'Only one source for ' + str(j)

    prob.solve()
    return X, value(prob.objective)
Run Code Online (Sandbox Code Playgroud)

lev*_*501 6

确保您没有重复的LpVariable名称,并注意带有不支持字符的LpVariable名称,-+[] ->/因为所有这些字符都被静默转换为下划线_

通过在控制台上打印求解器输出,可以LpSolverDefault.msg = 1在调用之前进行设置prob.solve()


小智 6

由于模型中的 Nan 输入,我最近遇到了类似的问题。我在 DataFrame 中有数据,其中一些单元格不应该被转换为变量以提高性能。然而,在创建目标函数和约束时,我注意到 Nan 的存在,当我改变它们时,它工作得很好。


小智 5

我认为您有重复的 LpVariable 名称。我刚刚遇到了同样的问题,并看到了它,感谢levis501 的回答。这里:

X = [[LpVariable('X' + str(i+1) + str(j+1), 0, C[i,j],LpBinary)
      for j in range(N)] for i in range(N)]
Run Code Online (Sandbox Code Playgroud)

X 包含一些同名的变量。例如,对于 i = 0 和 j = 10,您将得到“X111”,而对于 i = 10 和 j = 0,您也会得到“X111”。