mas*_*chu 2 python format datetime pandas
我是大熊猫的新手,仍然对它能做什么感到惊讶,虽然有时也会做事情;-)
我设法编写了一个小脚本,用于报告时间序列中遇到的缺失值的数量,无论是在每个月还是在系列的每一年.下面是使用一些虚拟数据进行演示的代码.
如果我打印出返回的结果(print cnty或print cntm),一切都看起来不错,但我想根据我的数据的分辨率格式化指数的日期时间值,也就是我希望拥有2000 1000 10 15的,而不是2000-12-31 1000 10 15为年产量2000-01 744 10 15为月产量.有没有一种简单的方法在pandas中执行此操作,或者我必须经历一些循环并在打印之前将事物转换为"普通"python.注意:我事先并不知道我有多少数据列,所以每行都有固定格式字符串对我来说不起作用.
import numpy as np
import pandas as pd
import datetime as dt
def make_data():
"""Make up some bogus data where we know the number of missing values"""
time = np.array([dt.datetime(2000,1,1)+dt.timedelta(hours=i)
for i in range(1000)])
wd = np.arange(0.,1000.,1.)
ws = wd*0.2
wd[[2,3,4,8,9,22,25,33,99,324]] = -99.9 # 10 missing values
ws[[2,3,4,10,11,12,565,644,645,646,647,648,666,667,669]] =-99.9 # 15 missing values
data = np.array(zip(time,wd,ws), dtype=[('time', dt.datetime),
('wd', 'f4'), ('ws', 'f4')])
return data
def count_miss(data):
time = data['time']
dff = pd.DataFrame(data, index=time)
# two options for setting missing values:
# 1) replace everything less or equal -99
for c in dff.columns:
ser = pd.Series(dff[c])
ser[ser <= -99.] = np.nan
dff[c] = ser
# 2) alternative: if you know the exact value to be replaced
# you can use the DataFrame replace method:
## dff.replace(-99.9, np.nan, inplace=True)
# add the time variable as data column
dff['time'] = time
# count missing values
# the print expressions will print date labels and the total number of values
# in the time column plus the number of missing values for all other columns
# annually:
cnty = dff.resample('A', how='count', closed='right', label='right')
for c in cnty.columns:
if c != 'time':
cnty[c] = cnty['time']-cnty[c]
# monthly:
cntm = dff.resample('M', how='count', closed='right', label='right')
for c in cntm.columns:
if c != 'time':
cntm[c] = cntm['time']-cntm[c]
return cnty, cntm
if __name__ == "__main__":
data = make_data()
cnty, cntm = count_miss(data)
Run Code Online (Sandbox Code Playgroud)
最后注意:是有一种DatetimeIndex的格式方法,但遗憾的是没有解释如何使用它.
所述format的方法DatetimeIndex同样地进行strftime一个的datetime.datetime对象.
这意味着你可以使用这里找到的格式字符串:http://www.tutorialspoint.com/python/time_strftime.htm
诀窍是你必须传递方法的函数formatterkwarg format.看起来像这样(仅作为与您的代码无关的示例:
import pandas
dt = pandas.DatetimeIndex(periods=10, start='2014-02-01', freq='10T')
dt.format(formatter=lambda x: x.strftime('%Y %m %d %H:%M.%S'))
Run Code Online (Sandbox Code Playgroud)
输出:
['2014 02 01 00:00.00',
'2014 02 01 00:10.00',
'2014 02 01 00:20.00',
'2014 02 01 00:30.00',
'2014 02 01 00:40.00',
'2014 02 01 00:50.00',
'2014 02 01 01:00.00',
'2014 02 01 01:10.00',
'2014 02 01 01:20.00',
'2014 02 01 01:30.00']
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3078 次 |
| 最近记录: |