Gle*_*enn 60 c python gensim word2vec
从word2vec网站我可以下载GoogleNews-vectors-negative300.bin.gz..bin文件(大约3.4GB)是一种对我没用的二进制格式.Tomas Mikolov 向我们保证:"将二进制格式转换为文本格式应该相当简单(尽管这需要更多的磁盘空间).检查距离工具中的代码,读取二进制文件相当简单." 不幸的是,我不太了解C http://word2vec.googlecode.com/svn/trunk/distance.c.
据说gensim也可以做到这一点,但我发现的所有教程似乎都是关于从文本转换而不是其他方式.
有人可以建议修改C代码或gensim发出文本的说明吗?
sil*_*ilo 80
我用这段代码加载二进制模型,然后将模型保存到文本文件中,
from gensim.models.keyedvectors import KeyedVectors
model = KeyedVectors.load_word2vec_format('path/to/GoogleNews-vectors-negative300.bin', binary=True)
model.save_word2vec_format('path/to/GoogleNews-vectors-negative300.txt', binary=False)
Run Code Online (Sandbox Code Playgroud)
注意:
以上代码适用于gensim的新版本.对于以前的版本,我使用了以下代码:
from gensim.models import word2vec
model = word2vec.Word2Vec.load_word2vec_format('path/to/GoogleNews-vectors-negative300.bin', binary=True)
model.save_word2vec_format('path/to/GoogleNews-vectors-negative300.txt', binary=False)
Run Code Online (Sandbox Code Playgroud)
Gle*_*enn 17
在word2vec-toolkit邮件列表中,Thomas Mensink 以小型C程序的形式提供了一个答案,它将.bin文件转换为文本.这是distance.c文件的修改.我用下面的Thomas代码替换了原来的distance.c并重建了word2vec(make clean; make),并将编译后的距离重命名为readbin.然后./readbin vector.bin将创建vector.bin的文本版本.
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <malloc.h>
const long long max_size = 2000; // max length of strings
const long long N = 40; // number of closest words that will be shown
const long long max_w = 50; // max length of vocabulary entries
int main(int argc, char **argv) {
FILE *f;
char file_name[max_size];
float len;
long long words, size, a, b;
char ch;
float *M;
char *vocab;
if (argc < 2) {
printf("Usage: ./distance <FILE>\nwhere FILE contains word projections in the BINARY FORMAT\n");
return 0;
}
strcpy(file_name, argv[1]);
f = fopen(file_name, "rb");
if (f == NULL) {
printf("Input file not found\n");
return -1;
}
fscanf(f, "%lld", &words);
fscanf(f, "%lld", &size);
vocab = (char *)malloc((long long)words * max_w * sizeof(char));
M = (float *)malloc((long long)words * (long long)size * sizeof(float));
if (M == NULL) {
printf("Cannot allocate memory: %lld MB %lld %lld\n", (long long)words * size * sizeof(float) / 1048576, words, size);
return -1;
}
for (b = 0; b < words; b++) {
fscanf(f, "%s%c", &vocab[b * max_w], &ch);
for (a = 0; a < size; a++) fread(&M[a + b * size], sizeof(float), 1, f);
len = 0;
for (a = 0; a < size; a++) len += M[a + b * size] * M[a + b * size];
len = sqrt(len);
for (a = 0; a < size; a++) M[a + b * size] /= len;
}
fclose(f);
//Code added by Thomas Mensink
//output the vectors of the binary format in text
printf("%lld %lld #File: %s\n",words,size,file_name);
for (a = 0; a < words; a++){
printf("%s ",&vocab[a * max_w]);
for (b = 0; b< size; b++){ printf("%f ",M[a*size + b]); }
printf("\b\b\n");
}
return 0;
}
Run Code Online (Sandbox Code Playgroud)
我删除了"\ b\b" printf.
顺便说一句,生成的文本文件仍然包含文本词和一些不必要的空格,我不想进行一些数值计算.我使用bash命令从每行删除了初始文本列和尾随空白.
cut --complement -d ' ' -f 1 GoogleNews-vectors-negative300.txt > GoogleNews-vectors-negative300_tuples-only.txt
sed 's/ $//' GoogleNews-vectors-negative300_tuples-only.txt
Run Code Online (Sandbox Code Playgroud)
小智 7
我正在使用 gensim 与 GoogleNews-vectors-negative300.bin 一起工作,并且binary = True在加载模型时包含了一个标志。
from gensim import word2vec
model = word2vec.Word2Vec.load_word2vec_format('Path/to/GoogleNews-vectors-negative300.bin', binary=True)
Run Code Online (Sandbox Code Playgroud)
似乎工作正常。
小智 7
格式为IEEE 754单精度二进制浮点格式:binary32 http://en.wikipedia.org/wiki/Single-precision_floating-point_format 它们使用little-endian.
举个例子:
下一行首先包括词汇单词,然后(浮点值300*4字节,每个维度4字节):
getByte till byte==32 (space). (60 47 115 62 32 => <\s>[space])
Run Code Online (Sandbox Code Playgroud)那么每个接下来的4个字节将代表一个浮点数
接下来的4字节:0 0 -108 58 => 0.001129150390625.
您可以查看维基百科链接以了解具体方法,让我以此为例:
(little-endian - >逆序)00111010 10010100 00000000 00000000
value = sign*exp*pre
您可以在word2vec中加载二进制文件,然后保存文本版本,如下所示:
from gensim.models import word2vec
model = word2vec.Word2Vec.load_word2vec_format('Path/to/GoogleNews-vectors-negative300.bin', binary=True)
model.save("file.txt")
Run Code Online (Sandbox Code Playgroud)
`