对神经网络中反向传播算法的理解

Ann*_*ron 17 java algorithm artificial-intelligence backpropagation neural-network

我无法理解反向传播算法.我阅读了很多并搜索了很多,但我无法理解为什么我的神经网络不起作用.我想确认我正在以正确的方式做所有事情.

这里是我的神经网络,当它被初始化,当输入的第一线[1,1]和输出[0]设置(因为你可以看到,我试图做XOR神经网络):

我的神经网络

我有3层:输入,隐藏和输出.第一层(输入)和隐藏层包含2个神经元,其中每个神经元有2个突触.最后一层(输出)也包含一个神经元,也有2个突触.

突触包含一个权重,它是前一个delta(在开头,它是0).连接到突触的输出可以与与synapse关联的sourceNeuron或者在input数组中找到,如果没有sourceNeuron(如在输入层中).

Layer.java类包含一个神经元列表.在我的NeuralNetwork.java中,我初始化神经网络,然后在我的训练集中循环.在每次迭代中,我替换输入和输出值,并调用对当前组在我的BP算法火车和(现在的1000倍历元)的算法运行一定数目的时间.

我使用的激活功能是sigmoid.

训练集和验证集是(input1,input2,output):

1,1,0
0,1,1
1,0,1
0,0,0
Run Code Online (Sandbox Code Playgroud)

这是我的Neuron.java实现:

public class Neuron {

    private IActivation activation;
    private ArrayList<Synapse> synapses; // Inputs
    private double output; // Output
    private double errorToPropagate;

    public Neuron(IActivation activation) {
        this.activation = activation;
        this.synapses = new ArrayList<Synapse>();
        this.output = 0;
        this.errorToPropagate = 0;
    }

    public void updateOutput(double[] inputs) {
        double sumWeights = this.calculateSumWeights(inputs);

        this.output = this.activation.activate(sumWeights);
    }

    public double calculateSumWeights(double[] inputs) {
        double sumWeights = 0;

        int index = 0;
        for (Synapse synapse : this.getSynapses()) {
            if (inputs != null) {
                sumWeights += synapse.getWeight() * inputs[index];
            } else {
                sumWeights += synapse.getWeight() * synapse.getSourceNeuron().getOutput();
            }

            index++;
        }

        return sumWeights;
    }

    public double getDerivative() {
        return this.activation.derivative(this.output);
    }

    [...]
}
Run Code Online (Sandbox Code Playgroud)

Synapse.java包含:

public Synapse(Neuron sourceNeuron) {
    this.sourceNeuron = sourceNeuron;
    Random r = new Random();
    this.weight = (-0.5) + (0.5 - (-0.5)) * r.nextDouble();
    this.delta = 0;
}

[... getter and setter ...]
Run Code Online (Sandbox Code Playgroud)

我的班级BackpropagationStrategy.java中训练方法运行一个while循环,并在1000次(epoch)之后使用训练集的一行停止.它看起来像这样:

this.forwardPropagation(neuralNetwork, inputs);

this.backwardPropagation(neuralNetwork, expectedOutput);

this.updateWeights(neuralNetwork);
Run Code Online (Sandbox Code Playgroud)

以下是上述方法的所有实现(learningRate = 0.45和momentum = 0.9):

public void forwardPropagation(NeuralNetwork neuralNetwork, double[] inputs) {

    for (Layer layer : neuralNetwork.getLayers()) {

        for (Neuron neuron : layer.getNeurons()) {
            if (layer.isInput()) {
                neuron.updateOutput(inputs);
            } else {
                neuron.updateOutput(null);
            }
        }
    }
}

public void backwardPropagation(NeuralNetwork neuralNetwork, double realOutput) {

    Layer lastLayer = null;

    // Loop à travers les hidden layers et le output layer uniquement
    ArrayList<Layer> layers = neuralNetwork.getLayers();
    for (int i = layers.size() - 1; i > 0; i--) {
        Layer layer = layers.get(i);

        for (Neuron neuron : layer.getNeurons()) {

            double errorToPropagate = neuron.getDerivative();

            // Output layer
            if (layer.isOutput()) {

                errorToPropagate *= (realOutput - neuron.getOutput());
            }
            // Hidden layers
            else {
                double sumFromLastLayer = 0;

                for (Neuron lastLayerNeuron : lastLayer.getNeurons()) {
                    for (Synapse synapse : lastLayerNeuron.getSynapses()) {
                        if (synapse.getSourceNeuron() == neuron) {
                            sumFromLastLayer += (synapse.getWeight() * lastLayerNeuron.getErrorToPropagate());

                            break;
                        }
                    }
                }

                errorToPropagate *= sumFromLastLayer;
            }

            neuron.setErrorToPropagate(errorToPropagate);
        }

        lastLayer = layer;
    }
}

public void updateWeights(NeuralNetwork neuralNetwork) {

    for (int i = neuralNetwork.getLayers().size() - 1; i > 0; i--) {

        Layer layer = neuralNetwork.getLayers().get(i);

        for (Neuron neuron : layer.getNeurons()) {

            for (Synapse synapse : neuron.getSynapses()) {

                double delta = this.learningRate * neuron.getError() * synapse.getSourceNeuron().getOutput();

                synapse.setWeight(synapse.getWeight() + delta + this.momentum * synapse.getDelta());

                synapse.setDelta(delta);
            }
        }
    }
}
Run Code Online (Sandbox Code Playgroud)

对于验证集,我只运行此:

this.forwardPropagation(neuralNetwork, inputs);
Run Code Online (Sandbox Code Playgroud)

然后检查输出层中神经元的输出.

我做错什么了吗?需要一些解释......

以下是1000个纪元后的结果:

Real: 0.0
Current: 0.025012156926937503
Real: 1.0
Current: 0.022566830709341495
Real: 1.0
Current: 0.02768416343491415
Real: 0.0
Current: 0.024903432706154027
Run Code Online (Sandbox Code Playgroud)

为什么输入图层中的突触没有更新?它被写入的任何地方只更新隐藏和输出层.

就像你看到的那样,这是完全错误的!它不会仅转到1.0的第一列车组输出(0.0).

更新1

这是使用此集合在网络上的一次迭代:[1.0,1.0,0.0].以下是前向传播方法的结果:

=== Input Layer

== Neuron #1

= Synapse #1
Weight: -0.19283583155573614
Input: 1.0

= Synapse #2
Weight: 0.04023817185601586
Input: 1.0

Sum: -0.15259765969972028
Output: 0.461924442180935

== Neuron #2

= Synapse #1
Weight: -0.3281099260608612
Input: 1.0

= Synapse #2
Weight: -0.4388250065958519
Input: 1.0

Sum: -0.7669349326567131
Output: 0.31714251453174147

=== Hidden Layer

== Neuron #1

= Synapse #1
Weight: 0.16703288052854093
Input: 0.461924442180935

= Synapse #2
Weight: 0.31683996162148054
Input: 0.31714251453174147

Sum: 0.17763999229679783
Output: 0.5442935820534444

== Neuron #2

= Synapse #1
Weight: -0.45330313978424686
Input: 0.461924442180935

= Synapse #2
Weight: 0.3287014377113835
Input: 0.31714251453174147

Sum: -0.10514659949771789
Output: 0.47373754172497556

=== Output Layer

== Neuron #1

= Synapse #1
Weight: 0.08643751629154495
Input: 0.5442935820534444

= Synapse #2
Weight: -0.29715579267218695
Input: 0.47373754172497556

Sum: -0.09372646936373039
Output: 0.47658552081912403
Run Code Online (Sandbox Code Playgroud)

更新2

我可能有偏见问题.我将借助这个答案来研究它:偏差在神经网络中的作用.它不会转移到下一个数据集,所以......

Ann*_*ron 0

我终于找到了问题所在。对于异或,我不需要任何偏差,它正在收敛到预期值。当您对最终输出进行舍入时,我得到了准确的输出。需要的是训练然后验证,然后再次训练直到神经网络令人满意。我训练每一组直到满意为止,但不是一遍又一遍地训练整组。

// Initialize the Neural Network
algorithm.initialize(this.numberOfInputs);

int index = 0;
double errorRate = 0;

// Loop until satisfaction or after some iterations
do {
    // Train the Neural Network
    algorithm.train(this.trainingDataSets, this.numberOfInputs);

    // Validate the Neural Network and return the error rate
    errorRate = algorithm.run(this.validationDataSets, this.numberOfInputs);

    index++;
} while (errorRate > minErrorRate && index < numberOfTrainValidateIteration);
Run Code Online (Sandbox Code Playgroud)

对于真实数据,我需要一个偏差,因为输出开始出现分歧。这是我添加偏差的方法:

Neuron.java类中,我添加了一个权重和输出为 1.0 的偏置突触。我将它与所有其他突触相加,然后将其放入我的激活函数中。

public class Neuron implements Serializable {

    [...]

    private Synapse bias;

    public Neuron(IActivation activation) {
        [...]
        this.bias = new Synapse(this);
        this.bias.setWeight(0.5); // Set initial weight OR keep the random number already set
    }

    public void updateOutput(double[] inputs) {
        double sumWeights = this.calculateSumWeights(inputs);

        this.output = this.activation.activate(sumWeights + this.bias.getWeight() * 1.0);
    }

    [...]
Run Code Online (Sandbox Code Playgroud)

BackPropagationStrategy.java中,我更改了 updateWeights 方法中每个偏差的权重和增量,并将其重命名为 updateWeightsAndBias。

public class BackPropagationStrategy implements IStrategy, Serializable {

    [...]

    public void updateWeightsAndBias(NeuralNetwork neuralNetwork, double[] inputs) {

        for (int i = neuralNetwork.getLayers().size() - 1; i >= 0; i--) {

            Layer layer = neuralNetwork.getLayers().get(i);

            for (Neuron neuron : layer.getNeurons()) {

                [...]

                Synapse bias = neuron.getBias();
                double delta = learning * 1.0;
                bias.setWeight(bias.getWeight() + delta + this.momentum * bias.getDelta());

                bias.setDelta(delta);
            }
        }
    }

    [...]
Run Code Online (Sandbox Code Playgroud)

有了真实的数据,网络正在收敛。现在的修剪工作是找到学习率、动量、错误率、神经元数量、隐藏层数量等的完美变量组合(如果可能的话)。