ccs*_*csv 77 python selection dataframe pandas
我有一个DataFrame:
import pandas as pd
import numpy as np
df = pd.DataFrame({'foo.aa': [1, 2.1, np.nan, 4.7, 5.6, 6.8],
'foo.fighters': [0, 1, np.nan, 0, 0, 0],
'foo.bars': [0, 0, 0, 0, 0, 1],
'bar.baz': [5, 5, 6, 5, 5.6, 6.8],
'foo.fox': [2, 4, 1, 0, 0, 5],
'nas.foo': ['NA', 0, 1, 0, 0, 0],
'foo.manchu': ['NA', 0, 0, 0, 0, 0],})
Run Code Online (Sandbox Code Playgroud)
我想在以foo.
.开头的列中选择值1 .有没有比这更好的方法:
df2 = df[(df['foo.aa'] == 1)|
(df['foo.fighters'] == 1)|
(df['foo.bars'] == 1)|
(df['foo.fox'] == 1)|
(df['foo.manchu'] == 1)
]
Run Code Online (Sandbox Code Playgroud)
类似于写东西的东西:
df2= df[df.STARTS_WITH_FOO == 1]
Run Code Online (Sandbox Code Playgroud)
答案应该打印出这样的DataFrame:
bar.baz foo.aa foo.bars foo.fighters foo.fox foo.manchu nas.foo
0 5.0 1.0 0 0 2 NA NA
1 5.0 2.1 0 1 4 0 0
2 6.0 NaN 0 NaN 1 0 1
5 6.8 6.8 1 0 5 0 0
[4 rows x 7 columns]
Run Code Online (Sandbox Code Playgroud)
EdC*_*ica 112
只需执行列表理解即可创建列:
In [28]:
filter_col = [col for col in df if col.startswith('foo')]
filter_col
Out[28]:
['foo.aa', 'foo.bars', 'foo.fighters', 'foo.fox', 'foo.manchu']
In [29]:
df[filter_col]
Out[29]:
foo.aa foo.bars foo.fighters foo.fox foo.manchu
0 1.0 0 0 2 NA
1 2.1 0 1 4 0
2 NaN 0 NaN 1 0
3 4.7 0 0 0 0
4 5.6 0 0 0 0
5 6.8 1 0 5 0
Run Code Online (Sandbox Code Playgroud)
另一种方法是从列创建一个系列并使用vectorised str方法startswith
:
In [33]:
df[df.columns[pd.Series(df.columns).str.startswith('foo')]]
Out[33]:
foo.aa foo.bars foo.fighters foo.fox foo.manchu
0 1.0 0 0 2 NA
1 2.1 0 1 4 0
2 NaN 0 NaN 1 0
3 4.7 0 0 0 0
4 5.6 0 0 0 0
5 6.8 1 0 5 0
Run Code Online (Sandbox Code Playgroud)
为了实现您的目标,您需要添加以下内容来过滤不符合==1
条件的值:
In [36]:
df[df[df.columns[pd.Series(df.columns).str.startswith('foo')]]==1]
Out[36]:
bar.baz foo.aa foo.bars foo.fighters foo.fox foo.manchu nas.foo
0 NaN 1 NaN NaN NaN NaN NaN
1 NaN NaN NaN 1 NaN NaN NaN
2 NaN NaN NaN NaN 1 NaN NaN
3 NaN NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN NaN
5 NaN NaN 1 NaN NaN NaN NaN
Run Code Online (Sandbox Code Playgroud)
编辑
看到你想要的东西之后好的回答是这样的:
In [72]:
df.loc[df[df[df.columns[pd.Series(df.columns).str.startswith('foo')]] == 1].dropna(how='all', axis=0).index]
Out[72]:
bar.baz foo.aa foo.bars foo.fighters foo.fox foo.manchu nas.foo
0 5.0 1.0 0 0 2 NA NA
1 5.0 2.1 0 1 4 0 0
2 6.0 NaN 0 NaN 1 0 1
5 6.8 6.8 1 0 5 0 0
Run Code Online (Sandbox Code Playgroud)
Ale*_*ley 48
现在pandas的索引支持字符串操作,可以说选择以'foo'开头的列的最简单和最好的方法就是:
df.loc[:, df.columns.str.startswith('foo')]
Run Code Online (Sandbox Code Playgroud)
或者,您可以使用过滤列(或行)标签df.filter()
.要指定正则表达式以匹配以下开头的名称foo.
:
>>> df.filter(regex=r'^foo\.', axis=1)
foo.aa foo.bars foo.fighters foo.fox foo.manchu
0 1.0 0 0 2 NA
1 2.1 0 1 4 0
2 NaN 0 NaN 1 0
3 4.7 0 0 0 0
4 5.6 0 0 0 0
5 6.8 1 0 5 0
Run Code Online (Sandbox Code Playgroud)
要仅选择所需的行(包含a 1
)和列,您可以使用loc
,使用filter
(或任何其他方法)选择列,并使用以下行any
:
>>> df.loc[(df == 1).any(axis=1), df.filter(regex=r'^foo\.', axis=1).columns]
foo.aa foo.bars foo.fighters foo.fox foo.manchu
0 1.0 0 0 2 NA
1 2.1 0 1 4 0
2 NaN 0 NaN 1 0
5 6.8 1 0 5 0
Run Code Online (Sandbox Code Playgroud)
Moh*_*ieg 11
最简单的方法是直接在列名上使用str,不需要 pd.Series
df.loc[:,df.columns.str.startswith("foo")]
Run Code Online (Sandbox Code Playgroud)
小智 9
就我而言,我需要一个前缀列表
colsToScale=["production", "test", "development"]
dc[dc.columns[dc.columns.str.startswith(tuple(colsToScale))]]
Run Code Online (Sandbox Code Playgroud)
您可以尝试使用正则表达式来过滤掉以“foo”开头的列
df.filter(regex='^foo*')
如果您需要在列中包含字符串 foo 那么
df.filter(regex='foo*')
会是合适的。
对于下一步,您可以使用
df[df.filter(regex='^foo*').values==1]
过滤掉 'foo*' 列的值之一为 1 的行。
归档时间: |
|
查看次数: |
69006 次 |
最近记录: |