Yu *_*eng 8 regression r linear-regression lm glm
我想知道如何约束某些参数lm()以获得正系数.有一些包或函数(例如display)可以使所有系数和拦截为正.
例如,在这个例子中,我只想强迫x1并x2具有正系数.
x1=c(NA,rnorm(99)*10)
x2=c(NA,NA,rnorm(98)*10)
x3=rnorm(100)*10
y=sin(x1)+cos(x2)-x3+rnorm(100)
lm(y~x1+x2+x3)
Call:
lm(formula = y ~ x1 + x2 + x3)
Coefficients:
(Intercept) x1 x2 x3
-0.06278 0.02261 -0.02233 -0.99626
Run Code Online (Sandbox Code Playgroud)
我试过功能nnnpls()包nnls,它可以轻松控制系数符号.遗憾的是,由于数据中的NA问题,我无法使用它,因为此函数不允许NA.
我看到函数NA可用于应用约束但我无法使其工作.
有人能让我知道我该怎么办?
set.seed(1)
x1=c(NA,rnorm(99)*10)
x2=c(NA,NA,rnorm(98)*10)
x3=rnorm(100)*10
y=sin(x1)+cos(x2)-x3+rnorm(100)
DF <- data.frame(x1,x2,x3,y)
lm(y~x1+x2+x3, data=DF)
#Call:
#lm(formula = y ~ x1 + x2 + x3, data = DF)
#
#Coefficients:
#(Intercept) x1 x2 x3
# -0.02438 -0.01735 -0.02030 -0.98203
Run Code Online (Sandbox Code Playgroud)
这给出了相同的结果:
library(penalized)
mod1 <- penalized(y, ~ x1 + x2 + x3, ~1,
lambda1=0, lambda2=0, positive = FALSE, data=na.omit(DF))
coef(mod1)
#(Intercept) x1 x2 x3
#-0.02438357 -0.01734856 -0.02030120 -0.98202831
Run Code Online (Sandbox Code Playgroud)
x1如果将和的系数限制x2为正,它们将变为零(如预期):
mod2 <- penalized(y, ~ x1 + x2 + x3, ~1,
lambda1=0, lambda2=0, positive = c(T, T, F), data=na.omit(DF))
coef(mod2)
#(Intercept) x3
#-0.03922266 -0.98011223
Run Code Online (Sandbox Code Playgroud)