Eri*_*Bal 11 numpy matplotlib scipy seaborn
我有两个数据阵列,如高度和重量:
import numpy as np, matplotlib.pyplot as plt
heights = np.array([50,52,53,54,58,60,62,64,66,67,68,70,72,74,76,55,50,45,65])
weights = np.array([25,50,55,75,80,85,50,65,85,55,45,45,50,75,95,65,50,40,45])
plt.plot(heights,weights,'bo')
plt.show()
Run Code Online (Sandbox Code Playgroud)
我想制作类似于此的情节:
http://www.sas.com/en_us/software/analytics/stat.html#m=screenshot6
任何想法都表示赞赏.
pyl*_*ang 35
这是我放在一起的东西.我试图密切模仿你的截图.
特定
一些详细的辅助函数用于绘制置信区间.
import numpy as np
import scipy as sp
import scipy.stats as stats
import matplotlib.pyplot as plt
%matplotlib inline
def plot_ci_manual(t, s_err, n, x, x2, y2, ax=None):
"""Return an axes of confidence bands using a simple approach.
Notes
-----
.. math:: \left| \: \hat{\mu}_{y|x0} - \mu_{y|x0} \: \right| \; \leq \; T_{n-2}^{.975} \; \hat{\sigma} \; \sqrt{\frac{1}{n}+\frac{(x_0-\bar{x})^2}{\sum_{i=1}^n{(x_i-\bar{x})^2}}}
.. math:: \hat{\sigma} = \sqrt{\sum_{i=1}^n{\frac{(y_i-\hat{y})^2}{n-2}}}
References
----------
.. [1] M. Duarte. "Curve fitting," Jupyter Notebook.
http://nbviewer.ipython.org/github/demotu/BMC/blob/master/notebooks/CurveFitting.ipynb
"""
if ax is None:
ax = plt.gca()
ci = t * s_err * np.sqrt(1/n + (x2 - np.mean(x))**2 / np.sum((x - np.mean(x))**2))
ax.fill_between(x2, y2 + ci, y2 - ci, color="#b9cfe7", edgecolor="")
return ax
def plot_ci_bootstrap(xs, ys, resid, nboot=500, ax=None):
"""Return an axes of confidence bands using a bootstrap approach.
Notes
-----
The bootstrap approach iteratively resampling residuals.
It plots `nboot` number of straight lines and outlines the shape of a band.
The density of overlapping lines indicates improved confidence.
Returns
-------
ax : axes
- Cluster of lines
- Upper and Lower bounds (high and low) (optional) Note: sensitive to outliers
References
----------
.. [1] J. Stults. "Visualizing Confidence Intervals", Various Consequences.
http://www.variousconsequences.com/2010/02/visualizing-confidence-intervals.html
"""
if ax is None:
ax = plt.gca()
bootindex = sp.random.randint
for _ in range(nboot):
resamp_resid = resid[bootindex(0, len(resid) - 1, len(resid))]
# Make coeffs of for polys
pc = sp.polyfit(xs, ys + resamp_resid, 1)
# Plot bootstrap cluster
ax.plot(xs, sp.polyval(pc, xs), "b-", linewidth=2, alpha=3.0 / float(nboot))
return ax
Run Code Online (Sandbox Code Playgroud)
码
# Computations ----------------------------------------------------------------
# Raw Data
heights = np.array([50,52,53,54,58,60,62,64,66,67,68,70,72,74,76,55,50,45,65])
weights = np.array([25,50,55,75,80,85,50,65,85,55,45,45,50,75,95,65,50,40,45])
x = heights
y = weights
# Modeling with Numpy
def equation(a, b):
"""Return a 1D polynomial."""
return np.polyval(a, b)
p, cov = np.polyfit(x, y, 1, cov=True) # parameters and covariance from of the fit of 1-D polynom.
y_model = equation(p, x) # model using the fit parameters; NOTE: parameters here are coefficients
# Statistics
n = weights.size # number of observations
m = p.size # number of parameters
dof = n - m # degrees of freedom
t = stats.t.ppf(0.975, n - m) # used for CI and PI bands
# Estimates of Error in Data/Model
resid = y - y_model
chi2 = np.sum((resid / y_model)**2) # chi-squared; estimates error in data
chi2_red = chi2 / dof # reduced chi-squared; measures goodness of fit
s_err = np.sqrt(np.sum(resid**2) / dof) # standard deviation of the error
# Plotting --------------------------------------------------------------------
fig, ax = plt.subplots(figsize=(8, 6))
# Data
ax.plot(
x, y, "o", color="#b9cfe7", markersize=8,
markeredgewidth=1, markeredgecolor="b", markerfacecolor="None"
)
# Fit
ax.plot(x, y_model, "-", color="0.1", linewidth=1.5, alpha=0.5, label="Fit")
x2 = np.linspace(np.min(x), np.max(x), 100)
y2 = equation(p, x2)
# Confidence Interval (select one)
plot_ci_manual(t, s_err, n, x, x2, y2, ax=ax)
#plot_ci_bootstrap(x, y, resid, ax=ax)
# Prediction Interval
pi = t * s_err * np.sqrt(1 + 1/n + (x2 - np.mean(x))**2 / np.sum((x - np.mean(x))**2))
ax.fill_between(x2, y2 + pi, y2 - pi, color="None", linestyle="--")
ax.plot(x2, y2 - pi, "--", color="0.5", label="95% Prediction Limits")
ax.plot(x2, y2 + pi, "--", color="0.5")
# Figure Modifications --------------------------------------------------------
# Borders
ax.spines["top"].set_color("0.5")
ax.spines["bottom"].set_color("0.5")
ax.spines["left"].set_color("0.5")
ax.spines["right"].set_color("0.5")
ax.get_xaxis().set_tick_params(direction="out")
ax.get_yaxis().set_tick_params(direction="out")
ax.xaxis.tick_bottom()
ax.yaxis.tick_left()
# Labels
plt.title("Fit Plot for Weight", fontsize="14", fontweight="bold")
plt.xlabel("Height")
plt.ylabel("Weight")
plt.xlim(np.min(x) - 1, np.max(x) + 1)
# Custom legend
handles, labels = ax.get_legend_handles_labels()
display = (0, 1)
anyArtist = plt.Line2D((0, 1), (0, 0), color="#b9cfe7") # create custom artists
legend = plt.legend(
[handle for i, handle in enumerate(handles) if i in display] + [anyArtist],
[label for i, label in enumerate(labels) if i in display] + ["95% Confidence Limits"],
loc=9, bbox_to_anchor=(0, -0.21, 1., 0.102), ncol=3, mode="expand"
)
frame = legend.get_frame().set_edgecolor("0.5")
# Save Figure
plt.tight_layout()
plt.savefig("filename.png", bbox_extra_artists=(legend,), bbox_inches="tight")
plt.show()
Run Code Online (Sandbox Code Playgroud)
产量
使用plot_ci_manual():
使用plot_ci_bootstrap():
希望这可以帮助.干杯.
细节
我相信,由于图例不在图中,因此它不会出现在matplotblib的弹出窗口中.它在Jupyter使用时工作正常%maplotlib inline.
主置信区间代码(plot_ci_manual())从另一个源改编,产生类似于OP的图.您可以通过取消注释第二个选项来选择称为残余引导的更高级技术plot_ci_bootstrap().
更新
stats.t.ppf()接受下尾概率.根据以下资源,t = sp.stats.t.ppf(0.95, n - m)更正为t = sp.stats.t.ppf(0.975, n - m)反映双侧95%t统计量(或单侧97.5%t统计量).
dof=17y2 更新后更灵活地响应给定模型(@regeneration).equation添加了抽象函数来包装模型函数.虽然没有证明,但非线性回归是可能的.根据需要修改适当的变量(感谢@PJW).也可以看看
小智 13
我偶尔需要做这种情节...这是我第一次使用 Python/Jupyter 做这件事,这篇文章对我帮助很大,特别是详细的 Pylang 答案。
我知道有“更简单”的方法可以到达那里,但我认为这种方法更具说教性,可以让我一步步了解正在发生的事情。我什至在这里了解到存在“预测间隔”!谢谢。
下面是更直接方式的 Pylang 代码,包括 Pearson 相关性(以及 r2)和均方误差 (MSE) 的计算。当然,最终的图(!)必须适应每个数据集......
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
heights = np.array([50,52,53,54,58,60,62,64,66,67,68,70,72,74,76,55,50,45,65])
weights = np.array([25,50,55,75,80,85,50,65,85,55,45,45,50,75,95,65,50,40,45])
x = heights
y = weights
slope, intercept = np.polyfit(x, y, 1) # linear model adjustment
y_model = np.polyval([slope, intercept], x) # modeling...
x_mean = np.mean(x)
y_mean = np.mean(y)
n = x.size # number of samples
m = 2 # number of parameters
dof = n - m # degrees of freedom
t = stats.t.ppf(0.975, dof) # Students statistic of interval confidence
residual = y - y_model
std_error = (np.sum(residual**2) / dof)**.5 # Standard deviation of the error
# calculating the r2
# https://www.statisticshowto.com/probability-and-statistics/coefficient-of-determination-r-squared/
# Pearson's correlation coefficient
numerator = np.sum((x - x_mean)*(y - y_mean))
denominator = ( np.sum((x - x_mean)**2) * np.sum((y - y_mean)**2) )**.5
correlation_coef = numerator / denominator
r2 = correlation_coef**2
# mean squared error
MSE = 1/n * np.sum( (y - y_model)**2 )
# to plot the adjusted model
x_line = np.linspace(np.min(x), np.max(x), 100)
y_line = np.polyval([slope, intercept], x_line)
# confidence interval
ci = t * std_error * (1/n + (x_line - x_mean)**2 / np.sum((x - x_mean)**2))**.5
# predicting interval
pi = t * std_error * (1 + 1/n + (x_line - x_mean)**2 / np.sum((x - x_mean)**2))**.5
############### Ploting
plt.rcParams.update({'font.size': 14})
fig = plt.figure()
ax = fig.add_axes([.1, .1, .8, .8])
ax.plot(x, y, 'o', color = 'royalblue')
ax.plot(x_line, y_line, color = 'royalblue')
ax.fill_between(x_line, y_line + pi, y_line - pi, color = 'lightcyan', label = '95% prediction interval')
ax.fill_between(x_line, y_line + ci, y_line - ci, color = 'skyblue', label = '95% confidence interval')
ax.set_xlabel('x')
ax.set_ylabel('y')
# rounding and position must be changed for each case and preference
a = str(np.round(intercept))
b = str(np.round(slope,2))
r2s = str(np.round(r2,2))
MSEs = str(np.round(MSE))
ax.text(45, 110, 'y = ' + a + ' + ' + b + ' x')
ax.text(45, 100, '$r^2$ = ' + r2s + ' MSE = ' + MSEs)
plt.legend(bbox_to_anchor=(1, .25), fontsize=12)
Run Code Online (Sandbox Code Playgroud)
use*_*128 10
您可以使用seaborn绘图库根据需要创建绘图.
In [18]: import seaborn as sns
In [19]: heights = np.array([50,52,53,54,58,60,62,64,66,67, 68,70,72,74,76,55,50,45,65])
...: weights = np.array([25,50,55,75,80,85,50,65,85,55,45,45,50,75,95,65,50,40,45])
...:
In [20]: sns.regplot(heights,weights, color ='blue')
Out[20]: <matplotlib.axes.AxesSubplot at 0x13644f60>
Run Code Online (Sandbox Code Playgroud)

| 归档时间: |
|
| 查看次数: |
14301 次 |
| 最近记录: |