如何在python中加速多个内部产品

ele*_*ora 18 python algorithm performance cython numba

我有一些简单的代码,可以执行以下操作.

F使用+ -1条目迭代所有可能的长度n列表.对于每一个,它使用+ -1条目迭代所有可能的长度2n列表S,其中$ S $的前半部分只是下半部分的副本.代码计算F每个S长度子列表的内积n.对于每个F,S,它计算在第一个非零内积之前为零的内积.

这是代码.

#!/usr/bin/python

from __future__ import division
import itertools
import operator
import math

n=14
m=n+1
def innerproduct(A, B):
    assert (len(A) == len(B))
    s = 0 
    for k in xrange(0,n):
        s+=A[k]*B[k]
    return s

leadingzerocounts = [0]*m
for S in itertools.product([-1,1], repeat = n):
    S1 = S + S
    for F in itertools.product([-1,1], repeat = n):
        i = 0
        while (i<m):
            ip = innerproduct(F, S1[i:i+n])
            if (ip == 0):
                leadingzerocounts[i] +=1
                i+=1
            else:
                break

print leadingzerocounts
Run Code Online (Sandbox Code Playgroud)

正确的输出n=14

[56229888, 23557248, 9903104, 4160640, 1758240, 755392, 344800, 172320, 101312, 75776, 65696, 61216, 59200, 59200, 59200]
Run Code Online (Sandbox Code Playgroud)

使用pypy,n = 14需要1分18秒.不幸的是,我真的想运行16,18,20,22,24,26.我不介意使用numba或cython但是如果可能的话我想保持接近python.

任何帮助加快这一点的人都非常感激.


我会在这里记录最快的解决方案.(如果我错过了更新的答案,请告诉我.)

  • 艾森斯塔特(C)在9分35.08秒时n = 22
  • Eisenstat(pypy)在1m16.344s时n = 18
  • Tupteq(pypy)n = 18 at 2m54.998s
  • Neil(numpy)在26秒时n = 14
  • n - 14 at 11m59.192s by kslote1(pypy)

Dav*_*tat 22

通过利用问题的循环对称性,这个新代码获得了另一个数量级的加速.这个Python版本使用Duval的算法枚举项链; C版本使用蛮力.两者都包含下面描述的加速.在我的机器上,C版本在100秒内解决了n = 20!一个背后的计算表明,如果你让它在一个核心上运行一周,它可以做n = 26,并且,如下所述,它可以顺应并行.

import itertools


def necklaces_with_multiplicity(n):
    assert isinstance(n, int)
    assert n > 0
    w = [1] * n
    i = 1
    while True:
        if n % i == 0:
            s = sum(w)
            if s > 0:
                yield (tuple(w), i * 2)
            elif s == 0:
                yield (tuple(w), i)
        i = n - 1
        while w[i] == -1:
            if i == 0:
                return
            i -= 1
        w[i] = -1
        i += 1
        for j in range(n - i):
            w[i + j] = w[j]


def leading_zero_counts(n):
    assert isinstance(n, int)
    assert n > 0
    assert n % 2 == 0
    counts = [0] * n
    necklaces = list(necklaces_with_multiplicity(n))
    for combo in itertools.combinations(range(n - 1), n // 2):
        for v, multiplicity in necklaces:
            w = list(v)
            for j in combo:
                w[j] *= -1
            for i in range(n):
                counts[i] += multiplicity * 2
                product = 0
                for j in range(n):
                    product += v[j - (i + 1)] * w[j]
                if product != 0:
                    break
    return counts


if __name__ == '__main__':
    print(leading_zero_counts(12))
Run Code Online (Sandbox Code Playgroud)

C版:

#include <stdio.h>

enum {
  N = 14
};

struct Necklace {
  unsigned int v;
  int multiplicity;
};

static struct Necklace g_necklace[1 << (N - 1)];
static int g_necklace_count;

static void initialize_necklace(void) {
  g_necklace_count = 0;
  for (unsigned int v = 0; v < (1U << (N - 1)); v++) {
    int multiplicity;
    unsigned int w = v;
    for (multiplicity = 2; multiplicity < 2 * N; multiplicity += 2) {
      w = ((w & 1) << (N - 1)) | (w >> 1);
      unsigned int x = w ^ ((1U << N) - 1);
      if (w < v || x < v) goto nope;
      if (w == v || x == v) break;
    }
    g_necklace[g_necklace_count].v = v;
    g_necklace[g_necklace_count].multiplicity = multiplicity;
    g_necklace_count++;
   nope:
    ;
  }
}

int main(void) {
  initialize_necklace();
  long long leading_zero_count[N + 1];
  for (int i = 0; i < N + 1; i++) leading_zero_count[i] = 0;
  for (unsigned int v_xor_w = 0; v_xor_w < (1U << (N - 1)); v_xor_w++) {
    if (__builtin_popcount(v_xor_w) != N / 2) continue;
    for (int k = 0; k < g_necklace_count; k++) {
      unsigned int v = g_necklace[k].v;
      unsigned int w = v ^ v_xor_w;
      for (int i = 0; i < N + 1; i++) {
        leading_zero_count[i] += g_necklace[k].multiplicity;
        w = ((w & 1) << (N - 1)) | (w >> 1);
        if (__builtin_popcount(v ^ w) != N / 2) break;
      }
    }
  }
  for (int i = 0; i < N + 1; i++) {
    printf(" %lld", 2 * leading_zero_count[i]);
  }
  putchar('\n');
  return 0;
}
Run Code Online (Sandbox Code Playgroud)

通过利用符号对称性(4x)并仅迭代通过第一个内积测试的那些向量(渐近,O(sqrt(n))x),可以获得一点加速.

import itertools


n = 10
m = n + 1


def innerproduct(A, B):
    s = 0
    for k in range(n):
        s += A[k] * B[k]
    return s


leadingzerocounts = [0] * m
for S in itertools.product([-1, 1], repeat=n - 1):
    S1 = S + (1,)
    S1S1 = S1 * 2
    for C in itertools.combinations(range(n - 1), n // 2):
        F = list(S1)
        for i in C:
            F[i] *= -1
        leadingzerocounts[0] += 4
        for i in range(1, m):
            if innerproduct(F, S1S1[i:i + n]):
                break
            leadingzerocounts[i] += 4
print(leadingzerocounts)
Run Code Online (Sandbox Code Playgroud)

C版本,以了解我们输给PyPy的性能有多少(PyPy为16,C大致相当于18):

#include <stdio.h>

enum {
  HALFN = 9,
  N = 2 * HALFN
};

int main(void) {
  long long lzc[N + 1];
  for (int i = 0; i < N + 1; i++) lzc[i] = 0;
  unsigned int xor = 1 << (N - 1);
  while (xor-- > 0) {
    if (__builtin_popcount(xor) != HALFN) continue;
    unsigned int s = 1 << (N - 1);
    while (s-- > 0) {
      lzc[0]++;
      unsigned int f = xor ^ s;
      for (int i = 1; i < N + 1; i++) {
        f = ((f & 1) << (N - 1)) | (f >> 1);
        if (__builtin_popcount(f ^ s) != HALFN) break;
        lzc[i]++;
      }
    }
  }
  for (int i = 0; i < N + 1; i++) printf(" %lld", 4 * lzc[i]);
  putchar('\n');
  return 0;
}
Run Code Online (Sandbox Code Playgroud)

这个算法令人尴尬地平行,因为它只是积累了所有的值xor.对于C版本,一个背后的计算表明,几千小时的CPU时间就足以计算n = 26出来了,EC2上目前的速率可以达到几百美元.毫无疑问会有一些优化(例如,矢量化),但对于这样的一次性,我不确定程序员的努力是多少值得.


Pet*_*vaz 7

一个非常简单的加速因子是改变这个代码:

def innerproduct(A, B):
    assert (len(A) == len(B))
    for j in xrange(len(A)):
        s = 0 
        for k in xrange(0,n):
            s+=A[k]*B[k]
    return s
Run Code Online (Sandbox Code Playgroud)

def innerproduct(A, B):
    assert (len(A) == len(B))
    s = 0 
    for k in xrange(0,n):
        s+=A[k]*B[k]
    return s
Run Code Online (Sandbox Code Playgroud)

(我不知道为什么你的循环超过j,但它每次只进行相同的计算,所以没必要.)

  • 谢谢,这只是一个错误!当你如此迅速地回答时,如果你不介意,我会解决问题. (2认同)