我正在尝试使用计算批量1D FFT cufftPlanMany
.该数据集来自一个三维场中,存储在一维阵列,其中我想计算1维FFT在x
和y
方向.数据存储如下图所示; 连续在x
然后y
然后z
.
在x
-direction中进行批量FFT 是(我相信)直截了当; 具有输入stride=1
,distance=nx
并且batch=ny * nz
,它计算在元件的FFT {0,1,2,3}
,{4,5,6,7}
,...
,{28,29,30,31}
.但是,我想不出一种方法可以在-direction中实现相同的FFT y
.一种用于每批xy
平面是再次简单(输入stride=nx
,dist=1
,batch=nx
过度导致的FFT {0,4,8,12}
,{1,5,9,13}
等).但是batch=nx * nz
,从那里{3,7,11,15}
开始{16,20,24,28}
,距离大于1
.这可以用cufftPlanMany以某种方式完成吗?
我认为对你的问题的简短回答(使用单个单元cufftPlanMany
对 3D 矩阵的列执行 1D FFT的可能性)是否定的。
事实上,根据 执行的转换cufftPlanMany
,您称之为
cufftPlanMany(&handle, rank, n,
inembed, istride, idist,
onembed, ostride, odist, CUFFT_C2C, batch);
Run Code Online (Sandbox Code Playgroud)
必须遵守高级数据布局。特别地,一维 FFT 是根据以下布局计算出来的
input[b * idist + x * istride]
Run Code Online (Sandbox Code Playgroud)
其中b
寻址b
第 -th 信号,并且istride
是同一信号中两个连续项之间的距离。如果 3D 矩阵具有维度M * N * Q
,并且要沿列执行 1D 变换,则两个连续元素之间的距离将为M
,而两个连续信号之间的距离将为1
。此外,批量执行的数量必须设置为等于M
。使用这些参数,您只能覆盖 3D 矩阵的一个切片。事实上,如果您尝试增加M
,那么 cuFFT 将开始尝试从第二行开始计算新的按列 FFT。此问题的唯一解决方案是迭代调用以cufftExecC2C
覆盖所有Q
切片。
作为记录,以下代码提供了有关如何对 3D 矩阵的列执行 1D FFT 的完整示例。
#include <thrust/device_vector.h>
#include <cufft.h>
/********************/
/* CUDA ERROR CHECK */
/********************/
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
int main() {
const int M = 3;
const int N = 4;
const int Q = 2;
thrust::host_vector<float2> h_matrix(M * N * Q);
for (int k=0; k<Q; k++)
for (int j=0; j<N; j++)
for (int i=0; i<M; i++) {
float2 temp;
temp.x = (float)(j + k * M);
//temp.x = 1.f;
temp.y = 0.f;
h_matrix[k*M*N+j*M+i] = temp;
printf("%i %i %i %f %f\n", i, j, k, temp.x, temp.y);
}
printf("\n");
thrust::device_vector<float2> d_matrix(h_matrix);
thrust::device_vector<float2> d_matrix_out(M * N * Q);
// --- Advanced data layout
// input[b * idist + x * istride]
// output[b * odist + x * ostride]
// b = signal number
// x = element of the b-th signal
cufftHandle handle;
int rank = 1; // --- 1D FFTs
int n[] = { N }; // --- Size of the Fourier transform
int istride = M, ostride = M; // --- Distance between two successive input/output elements
int idist = 1, odist = 1; // --- Distance between batches
int inembed[] = { 0 }; // --- Input size with pitch (ignored for 1D transforms)
int onembed[] = { 0 }; // --- Output size with pitch (ignored for 1D transforms)
int batch = M; // --- Number of batched executions
cufftPlanMany(&handle, rank, n,
inembed, istride, idist,
onembed, ostride, odist, CUFFT_C2C, batch);
for (int k=0; k<Q; k++)
cufftExecC2C(handle, (cufftComplex*)(thrust::raw_pointer_cast(d_matrix.data()) + k * M * N), (cufftComplex*)(thrust::raw_pointer_cast(d_matrix_out.data()) + k * M * N), CUFFT_FORWARD);
cufftDestroy(handle);
for (int k=0; k<Q; k++)
for (int j=0; j<N; j++)
for (int i=0; i<M; i++) {
float2 temp = d_matrix_out[k*M*N+j*M+i];
printf("%i %i %i %f %f\n", i, j, k, temp.x, temp.y);
}
}
Run Code Online (Sandbox Code Playgroud)
当您想要执行行的一维转换时,情况会有所不同。在这种情况下,两个连续元素之间的距离是1
,而两个连续信号之间的距离是M
。这允许您设置多个N * Q
转换,然后cufftExecC2C
仅调用一次。作为记录,下面的代码提供了 3D 矩阵行的 1D 变换的完整示例。
#include <thrust/device_vector.h>
#include <cufft.h>
/********************/
/* CUDA ERROR CHECK */
/********************/
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
int main() {
const int M = 3;
const int N = 4;
const int Q = 2;
thrust::host_vector<float2> h_matrix(M * N * Q);
for (int k=0; k<Q; k++)
for (int j=0; j<N; j++)
for (int i=0; i<M; i++) {
float2 temp;
temp.x = (float)(j + k * M);
//temp.x = 1.f;
temp.y = 0.f;
h_matrix[k*M*N+j*M+i] = temp;
printf("%i %i %i %f %f\n", i, j, k, temp.x, temp.y);
}
printf("\n");
thrust::device_vector<float2> d_matrix(h_matrix);
thrust::device_vector<float2> d_matrix_out(M * N * Q);
// --- Advanced data layout
// input[b * idist + x * istride]
// output[b * odist + x * ostride]
// b = signal number
// x = element of the b-th signal
cufftHandle handle;
int rank = 1; // --- 1D FFTs
int n[] = { M }; // --- Size of the Fourier transform
int istride = 1, ostride = 1; // --- Distance between two successive input/output elements
int idist = M, odist = M; // --- Distance between batches
int inembed[] = { 0 }; // --- Input size with pitch (ignored for 1D transforms)
int onembed[] = { 0 }; // --- Output size with pitch (ignored for 1D transforms)
int batch = N * Q; // --- Number of batched executions
cufftPlanMany(&handle, rank, n,
inembed, istride, idist,
onembed, ostride, odist, CUFFT_C2C, batch);
cufftExecC2C(handle, (cufftComplex*)(thrust::raw_pointer_cast(d_matrix.data())), (cufftComplex*)(thrust::raw_pointer_cast(d_matrix_out.data())), CUFFT_FORWARD);
cufftDestroy(handle);
for (int k=0; k<Q; k++)
for (int j=0; j<N; j++)
for (int i=0; i<M; i++) {
float2 temp = d_matrix_out[k*M*N+j*M+i];
printf("%i %i %i %f %f\n", i, j, k, temp.x, temp.y);
}
}
Run Code Online (Sandbox Code Playgroud)