use*_*759 5 python machine-learning k-means scikit-learn scikit-learn-pipeline
我的文字如图所示:
list1 = ["My name is xyz", "My name is pqr", "I work in abc"]
Run Code Online (Sandbox Code Playgroud)
以上将是使用 kmeans 聚类文本的训练集。
list2 = ["My name is xyz", "I work in abc"]
Run Code Online (Sandbox Code Playgroud)
以上是我的测试集。
我构建了一个矢量化器和模型,如下所示:
vectorizer = TfidfVectorizer(min_df = 0, max_df=0.5, stop_words = "english", charset_error = "ignore", ngram_range = (1,3))
vectorized = vectorizer.fit_transform(list1)
km=KMeans(n_clusters=2, init='k-means++', n_init=10, max_iter=1000, tol=0.0001, precompute_distances=True, verbose=0, random_state=None, copy_x=True, n_jobs=1)
km.fit(vectorized)
Run Code Online (Sandbox Code Playgroud)
如果我尝试预测“list2”测试集的集群:
km.predict(list2)
Run Code Online (Sandbox Code Playgroud)
我收到以下错误:
ValueError: Incorrect number of features. Got 2 features, expected 5
Run Code Online (Sandbox Code Playgroud)
有人告诉我用它Pipeline来解决这个问题。所以我写了下面的代码:
pipe = Pipeline([('vect', vectorizer), ('vectorized', vectorized), ('kmeans',km )])
Run Code Online (Sandbox Code Playgroud)
但我收到错误:
TypeError Traceback (most recent call last)
/mnt/folder/Text_Mining/<ipython-input-14-321cabc3bf35> in <module>()
----> 1 pipe = Pipeline([('vect', vectorizer), ('vectorized', vectorized), ('kmeans',km )])
/usr/local/lib/python2.7/dist-packages/scikit_learn-0.13-py2.7-linux-x86_64.egg/sklearn/pipeline.pyc in __init__(self, steps)
87 raise TypeError("All intermediate steps a the chain should "
88 "be transforms and implement fit and transform"
---> 89 "'%s' (type %s) doesn't)" % (t, type(t)))
90
91 if not hasattr(estimator, "fit"):
TypeError: All intermediate steps a the chain should be transforms and implement fit and transform' (0, 2) 1.0
(1, 4) 0.57735026919
(1, 3) 0.57735026919
(1, 1) 0.57735026919
(2, 0) 1.0' (type <class 'scipy.sparse.csr.csr_matrix'>) doesn't)
Run Code Online (Sandbox Code Playgroud)
我认为也许 的输出vectorized没有实现拟合和转换,但是在这种特殊情况下我该如何做到这一点?我是机器学习的新手。另外,如何从 kmeans 模型中获取标签?当我运行 kmeans 时,我可以使用 访问集群标签km.labels_。如何在管道中做类似的事情?
你们非常接近!跳过vectorizer.fit()中间的显式步骤,并在管道中完成所有操作:
list1 = ["My name is xyz", "My name is pqr", "I work in abc"]
list2 = ["My name is xyz", "I work in abc"]
vectorizer = TfidfVectorizer(min_df = 0, max_df=0.5, stop_words = "english", ngram_range = (1,3))
km = KMeans(n_clusters=2, init='k-means++', n_init=10, max_iter=1000, tol=0.0001, precompute_distances=True, verbose=0, random_state=None, copy_x=True, n_jobs=1)
pipe = Pipeline([('vect', vectorizer), ('kmeans', km)])
pipe.fit(list1)
pipe.transform(list2)
Run Code Online (Sandbox Code Playgroud)
结果:
数组([[0.70710678, 1.41421356], [0.70710678, 1.41421356]])
| 归档时间: |
|
| 查看次数: |
10328 次 |
| 最近记录: |