应用自定义groupby聚合函数在pandas python中输出二进制结果

rol*_*and 8 python group-by aggregate-functions pandas

我有一个交易者交易的数据集,其中感兴趣的变量Buy/Sell是二进制的,并且当交易是买入时取值为1,如果是卖出则取0.一个例子如下:

Trader     Buy/Sell
  A           1
  A           0
  B           1
  B           1
  B           0
  C           1
  C           0
  C           0
Run Code Online (Sandbox Code Playgroud)

我想计算Buy/Sell每个交易者的净额,如果交易者有超过50%的交易作为买入,他将有Buy/Sell1,如果他有低于50%的买入,那么他将有Buy/Sell0和如果他确实有50%的NA(并且将来会被忽视).

因此对于交易员A,买入比例​​是(买入的数量)/(交易者的总数)= 1/2 = 0.5,这给出了NA.

对于交易者B,它是2/3 = 0.67,给出1

对于交易者C,它是1/3 = 0.33,给出0

该表应如下所示:

Trader     Buy/Sell
  A           NA
  B           1
  C           0 
Run Code Online (Sandbox Code Playgroud)

最终我想计算总的聚合购买数量,在这种情况下是1,以及聚合的交易总数(无视NA),在这种情况下为2.我对第二个表格不感兴趣,我只是感兴趣在总计购买数量和总计数量(计数)中Buy/Sell.

我怎么能在熊猫中做到这一点?

unu*_*tbu 16

import numpy as np
import pandas as pd

df = pd.DataFrame({'Buy/Sell': [1, 0, 1, 1, 0, 1, 0, 0],
                   'Trader': ['A', 'A', 'B', 'B', 'B', 'C', 'C', 'C']})

grouped = df.groupby(['Trader'])
result = grouped['Buy/Sell'].agg(['sum', 'count'])
means = grouped['Buy/Sell'].mean()
result['Buy/Sell'] = np.select(condlist=[means>0.5, means<0.5], choicelist=[1, 0], 
    default=np.nan)
print(result)
Run Code Online (Sandbox Code Playgroud)

产量

        Buy/Sell  sum  count
Trader                      
A            NaN    1      2
B              1    2      3
C              0    1      3
Run Code Online (Sandbox Code Playgroud)

我的原始答案使用了自定义聚合器categorize:

def categorize(x):
    m = x.mean()
    return 1 if m > 0.5 else 0 if m < 0.5 else np.nan
result = df.groupby(['Trader'])['Buy/Sell'].agg([categorize, 'sum', 'count'])
result = result.rename(columns={'categorize' : 'Buy/Sell'})
Run Code Online (Sandbox Code Playgroud)

虽然调用自定义函数可能很方便,但与内置聚合器(例如groupby/agg/mean)相比,使用自定义函数时性能通常会明显变慢.内置聚合器是Cython化的,而自定义函数将性能降低到普通Python for循环速度.

当组的数量很大时,速度的差异尤其显着.例如,对于具有1000个组的10000行DataFrame,

import numpy as np
import pandas as pd
np.random.seed(2017)
N = 10000
df = pd.DataFrame({
    'Buy/Sell': np.random.randint(2, size=N),
    'Trader': np.random.randint(1000, size=N)})

def using_select(df):
    grouped = df.groupby(['Trader'])
    result = grouped['Buy/Sell'].agg(['sum', 'count'])
    means = grouped['Buy/Sell'].mean()
    result['Buy/Sell'] = np.select(condlist=[means>0.5, means<0.5], choicelist=[1, 0], 
        default=np.nan)
    return result

def categorize(x):
    m = x.mean()
    return 1 if m > 0.5 else 0 if m < 0.5 else np.nan

def using_custom_function(df):
    result = df.groupby(['Trader'])['Buy/Sell'].agg([categorize, 'sum', 'count'])
    result = result.rename(columns={'categorize' : 'Buy/Sell'})
    return result
Run Code Online (Sandbox Code Playgroud)

using_selectusing_custom_function以下快50倍:

In [69]: %timeit using_custom_function(df)
10 loops, best of 3: 132 ms per loop

In [70]: %timeit using_select(df)
100 loops, best of 3: 2.46 ms per loop

In [71]: 132/2.46
Out[71]: 53.65853658536585
Run Code Online (Sandbox Code Playgroud)


小智 5

Pandascut()对 @unutbu 的答案进行了改进,只需一半的时间即可得到结果。

\n\n
def using_select(df):\n    grouped = df.groupby(['Trader'])\n    result = grouped['Buy/Sell'].agg(['sum', 'count'])\n    means = grouped['Buy/Sell'].mean()\n    result['Buy/Sell'] = np.select(condlist=[means>0.5, means<0.5], choicelist=[1, 0], \n        default=np.nan)\n    return result\n\n\ndef using_cut(df):\n    grouped = df.groupby(['Trader'])\n    result = grouped['Buy/Sell'].agg(['sum', 'count', 'mean'])\n    result['Buy/Sell'] = pd.cut(result['mean'], [0, 0.5, 1], labels=[0, 1], include_lowest=True)\n    result['Buy/Sell']=np.where(result['mean']==0.5,np.nan, result['Buy/Sell'])\n    return result\n
Run Code Online (Sandbox Code Playgroud)\n\n

using_cut()在我的系统中,每个循环的平均运行时间为 5.21 毫秒,而using_select()每个循环的平均运行时间为 10.4 毫秒。

\n\n
%timeit using_select(df)\n10.4 ms \xc2\xb1 1.07 ms per loop (mean \xc2\xb1 std. dev. of 7 runs, 100 loops each)\n\n%timeit using_cut(df)\n5.21 ms \xc2\xb1 147 \xc2\xb5s per loop (mean \xc2\xb1 std. dev. of 7 runs, 100 loops each)\n
Run Code Online (Sandbox Code Playgroud)\n