sys*_*ser 4 python elasticsearch pyes pyelasticsearch
我看到以下API将在Elasticsearch中通过查询进行删除 - http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-delete-by-query.html
但我想对弹性搜索批量API做同样的事情,即使我可以使用批量上传文档
es.bulk(body=json_batch)
Run Code Online (Sandbox Code Playgroud)
我不知道如何使用python批量API进行弹性搜索来调用查询删除.
小智 7
看看elasticsearch如何通过查询API弃用删除.我使用绑定创建了这个python脚本来做同样的事情.首先定义ES连接:
import elasticsearch
es = elasticsearch.Elasticsearch(['localhost'])
Run Code Online (Sandbox Code Playgroud)
现在,您可以使用它来为要删除的结果创建查询.
search=es.search(
q='The Query to ES.',
index="*logstash-*",
size=10,
search_type="scan",
scroll='5m',
)
Run Code Online (Sandbox Code Playgroud)
现在,您可以循环滚动该查询.在我们这样做时生成我们的请求.
while True:
try:
# Git the next page of results.
scroll=es.scroll( scroll_id=search['_scroll_id'], scroll='5m', )
# Since scroll throws an error catch it and break the loop.
except elasticsearch.exceptions.NotFoundError:
break
# We have results initialize the bulk variable.
bulk = ""
for result in scroll['hits']['hits']:
bulk = bulk + '{ "delete" : { "_index" : "' + str(result['_index']) + '", "_type" : "' + str(result['_type']) + '", "_id" : "' + str(result['_id']) + '" } }\n'
# Finally do the deleting.
es.bulk( body=bulk )
Run Code Online (Sandbox Code Playgroud)
要使用批量api,您需要确保两件事:
该elasticsearch-py散装API允许你通过包括批量删除记录,'_op_type': 'delete'每个记录。但是,如果要按查询删除,则仍然需要进行两个查询:一个查询要删除的记录,另一个查询要删除它们。
批量执行此操作的最简单方法是使用python模块的scan()帮助程序,该帮助程序包装了ElasticSearch Scroll API,因此您不必跟踪_scroll_ids。与bulk()帮助程序一起使用,以代替已弃用的delete_by_query():
from elasticsearch.helpers import bulk, scan
bulk_deletes = []
for result in scan(es,
query=es_query_body, # same as the search() body parameter
index=ES_INDEX,
doc_type=ES_DOC,
_source=False,
track_scores=False,
scroll='5m'):
result['_op_type'] = 'delete'
bulk_deletes.append(result)
bulk(elasticsearch, bulk_deletes)
Run Code Online (Sandbox Code Playgroud)
由于_source=False已传递,因此不返回文档正文,因此每个结果都非常小。但是,如果您有内存限制,则可以很轻松地进行批处理:
BATCH_SIZE = 100000
i = 0
bulk_deletes = []
for result in scan(...):
if i == BATCH_SIZE:
bulk(elasticsearch, bulk_deletes)
bulk_deletes = []
i = 0
result['_op_type'] = 'delete'
bulk_deletes.append(result)
i += 1
bulk(elasticsearch, bulk_deletes)
Run Code Online (Sandbox Code Playgroud)
小智 5
我目前正在使用基于@drs 响应的脚本,但始终使用bulk()帮助程序。它能够使用chunk_size参数(默认为 500,请参阅straming_bulk()了解更多信息)从迭代器创建批量作业。
from elasticsearch import Elasticsearch
from elasticsearch.helpers import scan, bulk
BULK_SIZE = 1000
def stream_items(es, query):
for e in scan(es,
query=query,
index=ES_INDEX,
doc_type=ES_DOCTYPE,
scroll='1m',
_source=False):
# There exists a parameter to avoid this del statement (`track_source`) but at my version it doesn't exists.
del e['_score']
e['_op_type'] = 'delete'
yield e
es = Elasticsearch(host='localhost')
bulk(es, stream_items(es, query), chunk_size=BULK_SIZE)
Run Code Online (Sandbox Code Playgroud)