无法从应用程序连接到独立群集

dim*_*son 5 apache-spark

我正在尝试从应用程序连接到Spark的独立集群.我想在一台机器上做这个.我按命令运行独立主服务器:

bash start-master.sh    
Run Code Online (Sandbox Code Playgroud)

然后我按命令运行一个worker:

bash spark-class org.apache.spark.deploy.worker.Worker spark://PC:7077 -m 512m
Run Code Online (Sandbox Code Playgroud)

(我为它分配了512 MB).

在master的web UI上:

http://localhost:8080
Run Code Online (Sandbox Code Playgroud)

我明白了,那个主人和工人正在奔跑.

然后我尝试使用以下命令从应用程序连接到群集:

JavaSparkContext sc = new JavaSparkContext("spark://PC:7077", "myapplication");
Run Code Online (Sandbox Code Playgroud)

当我运行应用程序时,它崩溃并显示以下错误消息:

4/11/01 22:53:26 INFO client.AppClient$ClientActor: Connecting to master spark://PC:7077...        
    14/11/01 22:53:26 INFO spark.SparkContext: Starting job: collect at App.java:115
    14/11/01 22:53:26 INFO scheduler.DAGScheduler: Got job 0 (collect at App.java:115)         with 2 output partitions (allowLocal=false)
    14/11/01 22:53:26 INFO scheduler.DAGScheduler: Final stage: Stage 0(collect at         App.java:115)
    14/11/01 22:53:26 INFO scheduler.DAGScheduler: Parents of final stage: List()
    14/11/01 22:53:26 INFO scheduler.DAGScheduler: Missing parents: List()
    14/11/01 22:53:26 INFO scheduler.DAGScheduler: Submitting Stage 0                 (ParallelCollectionRDD[0] at parallelize at App.java:109), which has no missing parents
    14/11/01 22:53:27 INFO scheduler.DAGScheduler: Submitting 2 missing tasks from         Stage 0 (ParallelCollectionRDD[0] at parallelize at App.java:109)
    14/11/01 22:53:27 INFO scheduler.TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
    14/11/01 22:53:42 WARN scheduler.TaskSchedulerImpl: Initial job has not accepted         any resources; check your cluster UI to ensure that workers are         registered and have sufficient memory
    14/11/01 22:53:46 INFO client.AppClient$ClientActor: Connecting to master         spark://PC:7077...
    14/11/01 22:53:57 WARN scheduler.TaskSchedulerImpl: Initial job has not accepted         any resources; check your cluster UI to ensure that workers are         registered and have sufficient memory
    14/11/01 22:54:06 INFO client.AppClient$ClientActor: Connecting to master         spark://PC:7077...
    14/11/01 22:54:12 WARN scheduler.TaskSchedulerImpl: Initial job has not accepted         any resources; check your cluster UI to ensure that workers are         registered and have sufficient memory
    14/11/01 22:54:26 ERROR cluster.SparkDeploySchedulerBackend: Application has been         killed. Reason: All masters are unresponsive! Giving up.
    14/11/01 22:54:26 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 0.0, whose         tasks have all completed, from pool 
    14/11/01 22:54:26 INFO scheduler.DAGScheduler: Failed to run collect at         App.java:115
    Exception in thread "main" 14/11/01 22:54:26 INFO scheduler.TaskSchedulerImpl:         Cancelling stage 0
    org.apache.spark.SparkException: Job aborted due to stage failure: All masters are         unresponsive! Giving up.
        at         org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAnd        IndependentStages(DAGScheduler.scala:1033)
        at         org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1017        )
        at         org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1015        )
        at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
        at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1015)
        at         org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.s        cala:633)
        at         org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.s        cala:633)
        at scala.Option.foreach(Option.scala:236)
        at         org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:633)
        at         org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAG        Scheduler.scala:1207)
        at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
        at akka.actor.ActorCell.invoke(ActorCell.scala:456)
        at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
        at akka.dispatch.Mailbox.run(Mailbox.scala:219)
        at         akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
        at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
        at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
        at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
        at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
    14/11/01 22:54:26 INFO handler.ContextHandler: stopped         o.e.j.s.ServletContextHandler{/metrics/json,null}
    14/11/01 22:54:26 INFO handler.ContextHandler: stopped         o.e.j.s.ServletContextHandler{/stages/stage/kill,null}
    14/11/01 22:54:26 INFO handler.ContextHandler: stopped         o.e.j.s.ServletContextHandler{/,null}
    14/11/01 22:54:26 INFO handler.ContextHandler: stopped         o.e.j.s.ServletContextHandler{/static,null}
    14/11/01 22:54:26 INFO handler.ContextHandler: stopped         o.e.j.s.ServletContextHandler{/executors/json,null}
    14/11/01 22:54:26 INFO handler.ContextHandler: stopped         o.e.j.s.ServletContextHandler{/executors,null}
    14/11/01 22:54:26 INFO handler.ContextHandler: stopped         o.e.j.s.ServletContextHandler{/environment/json,null}
Run Code Online (Sandbox Code Playgroud)

有什么想法发生了什么?

PS我正在使用预构建版本的Spark - spark-1.1.0-bin-hadoop2.4.

谢谢.

Jos*_*sen 4

确保独立工作程序和 Spark 驱动程序都连接到 Spark 主站,其 Web UI 中列出的确切地址/启动日志消息中打印的地址相同。Spark 使用 Akka 进行一些控制平面通信,而 Akka 对主机名非常挑剔,因此这些需要完全匹配。

有几个选项可以控制驱动程序和主机将绑定到哪些主机名/网络接口。也许最简单的选择是设置SPARK_LOCAL_IP环境变量来控制主站/驱动程序将绑定到的地址。有关影响网络地址绑定的其他设置的概述,请参阅http://databricks.gitbooks.io/databricks-spark-knowledge-base/content/troubleshooting/connectivity_issues.html 。