如何选择a的前4行data.frame
:
Weight Response
1 Control 59 0.0
2 Treatment 90 0.8
3 Treatment 47 0.1
4 Treamment 106 0.1
5 Control 85 0.7
6 Treatment 73 0.6
7 Control 61 0.2
Run Code Online (Sandbox Code Playgroud)
Edu*_*oni 139
用途head
:
dnow <- data.frame(x=rnorm(100), y=runif(100))
head(dnow,4) ## default is 6
Run Code Online (Sandbox Code Playgroud)
Sha*_*ane 118
使用索引:
df[1:4,]
Run Code Online (Sandbox Code Playgroud)
括号中的值可以解释为逻辑,数字或字符(匹配相应的名称):
df[row.index, column.index]
Run Code Online (Sandbox Code Playgroud)
阅读帮助(`[`)以获取有关此主题的更多详细信息,并阅读R简介中的索引矩阵.
Gia*_*omo 14
如果有人对dplyr
解决方案感兴趣,那么它非常直观:
dt <- dt %>%
slice(1:4)
Run Code Online (Sandbox Code Playgroud)
Des*_*gos 10
如果您的行少于4行,则可以使用head
函数(head(data, 4)
或head(data, n=4)
),它就像魅力一样.但是,假设我们有以下15行的数据集
>data <- data <- read.csv("./data.csv", sep = ";", header=TRUE)
>data
LungCap Age Height Smoke Gender Caesarean
1 6.475 6 62.1 no male no
2 10.125 18 74.7 yes female no
3 9.550 16 69.7 no female yes
4 11.125 14 71.0 no male no
5 4.800 5 56.9 no male no
6 6.225 11 58.7 no female no
7 4.950 8 63.3 no male yes
8 7.325 11 70.4 no male no
9 8.875 15 70.5 no male no
10 6.800 11 59.2 no male no
11 6.900 12 59.3 no male no
12 6.100 13 59.4 no male no
13 6.110 14 59.5 no male no
14 6.120 15 59.6 no male no
15 6.130 16 59.7 no male no
Run Code Online (Sandbox Code Playgroud)
比方说,你想选择前10行.最简单的方法是data[1:10, ]
.
> data[1:10,]
LungCap Age Height Smoke Gender Caesarean
1 6.475 6 62.1 no male no
2 10.125 18 74.7 yes female no
3 9.550 16 69.7 no female yes
4 11.125 14 71.0 no male no
5 4.800 5 56.9 no male no
6 6.225 11 58.7 no female no
7 4.950 8 63.3 no male yes
8 7.325 11 70.4 no male no
9 8.875 15 70.5 no male no
10 6.800 11 59.2 no male no
Run Code Online (Sandbox Code Playgroud)
但是,假设您尝试检索前19行并查看会发生什么 - 您将缺少值
> data[1:19,]
LungCap Age Height Smoke Gender Caesarean
1 6.475 6 62.1 no male no
2 10.125 18 74.7 yes female no
3 9.550 16 69.7 no female yes
4 11.125 14 71.0 no male no
5 4.800 5 56.9 no male no
6 6.225 11 58.7 no female no
7 4.950 8 63.3 no male yes
8 7.325 11 70.4 no male no
9 8.875 15 70.5 no male no
10 6.800 11 59.2 no male no
11 6.900 12 59.3 no male no
12 6.100 13 59.4 no male no
13 6.110 14 59.5 no male no
14 6.120 15 59.6 no male no
15 6.130 16 59.7 no male no
NA NA NA NA <NA> <NA> <NA>
NA.1 NA NA NA <NA> <NA> <NA>
NA.2 NA NA NA <NA> <NA> <NA>
NA.3 NA NA NA <NA> <NA> <NA>
Run Code Online (Sandbox Code Playgroud)
并使用head()函数,
> head(data, 19) # or head(data, n=19)
LungCap Age Height Smoke Gender Caesarean
1 6.475 6 62.1 no male no
2 10.125 18 74.7 yes female no
3 9.550 16 69.7 no female yes
4 11.125 14 71.0 no male no
5 4.800 5 56.9 no male no
6 6.225 11 58.7 no female no
7 4.950 8 63.3 no male yes
8 7.325 11 70.4 no male no
9 8.875 15 70.5 no male no
10 6.800 11 59.2 no male no
11 6.900 12 59.3 no male no
12 6.100 13 59.4 no male no
13 6.110 14 59.5 no male no
14 6.120 15 59.6 no male no
15 6.130 16 59.7 no male no
Run Code Online (Sandbox Code Playgroud)
希望这有帮助!
对于DataFrame,可以简单地输入
head(data, num=10L)
Run Code Online (Sandbox Code Playgroud)
以前10个为例.
对于data.frame,可以简单地输入
head(data, 10)
Run Code Online (Sandbox Code Playgroud)
获得前10名.