Ben*_*uhn 5 python datetime numpy pandas
这是设置:
我有两个(整数索引)列,start
和month_delta
. start
有时间戳(它的内部类型是np.datetime64[ns]
)并且month_delta
是整数。
我想很快产生包括在每个日期时间的列start
,在几个月内完成相应数量的偏移month_delta
。我该怎么做呢?
我尝试过但不起作用的事情:
apply
太慢了。DateOffset
对象添加到一系列datetime64[ns]
dtype(或 a DatetimeIndex
)。timedelta64
对象;Pandas 默默地将基于月份的 timedeltas 转换为大约 30 天长的基于纳秒的 timedeltas。(哎呀!没有默默失败是怎么回事?)目前,我正在迭代所有不同的值,month_delta
并在我创建tshift
的 a 的相关部分执行该数量的操作DatetimeIndex
,但这是一个可怕的混杂:
new_dates = pd.Series(pd.Timestamp.now(), index=start.index)
date_index = pd.DatetimeIndex(start)
for i in xrange(month_delta.max()):
mask = (month_delta == i)
cur_dates = pd.Series(index=date_index[mask]).tshift(i, freq='M').index
new_dates[mask] = cur_dates
Run Code Online (Sandbox Code Playgroud)
糟糕!有什么建议?
这是一种方法(通过将 NumPy datetime64s 与 timedelta64s 添加),无需调用apply
:
import pandas as pd
import numpy as np
np.random.seed(1)
def combine64(years, months=1, days=1, weeks=None, hours=None, minutes=None,
seconds=None, milliseconds=None, microseconds=None, nanoseconds=None):
years = np.asarray(years) - 1970
months = np.asarray(months) - 1
days = np.asarray(days) - 1
types = ('<M8[Y]', '<m8[M]', '<m8[D]', '<m8[W]', '<m8[h]',
'<m8[m]', '<m8[s]', '<m8[ms]', '<m8[us]', '<m8[ns]')
vals = (years, months, days, weeks, hours, minutes, seconds,
milliseconds, microseconds, nanoseconds)
return sum(np.asarray(v, dtype=t) for t, v in zip(types, vals)
if v is not None)
def year(dates):
"Return an array of the years given an array of datetime64s"
return dates.astype('M8[Y]').astype('i8') + 1970
def month(dates):
"Return an array of the months given an array of datetime64s"
return dates.astype('M8[M]').astype('i8') % 12 + 1
def day(dates):
"Return an array of the days of the month given an array of datetime64s"
return (dates - dates.astype('M8[M]')) / np.timedelta64(1, 'D') + 1
N = 10
df = pd.DataFrame({
'start': pd.date_range('2000-1-25', periods=N, freq='D'),
'months': np.random.randint(12, size=N)})
start = df['start'].values
df['new_date'] = combine64(year(start), months=month(start) + df['months'],
days=day(start))
print(df)
Run Code Online (Sandbox Code Playgroud)
产量
months start new_date
0 5 2000-01-25 2000-06-25
1 11 2000-01-26 2000-12-26
2 8 2000-01-27 2000-09-27
3 9 2000-01-28 2000-10-28
4 11 2000-01-29 2000-12-29
5 5 2000-01-30 2000-06-30
6 0 2000-01-31 2000-01-31
7 0 2000-02-01 2000-02-01
8 1 2000-02-02 2000-03-02
9 7 2000-02-03 2000-09-03
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
3224 次 |
最近记录: |