abu*_*abu 5 json hadoop mapreduce
我是hadoop mapreduce的新手
我有输入文本文件,其中数据已存储如下.这里只有几个元组(data.txt)
{"author":"Shari?f Qa?sim","book":"al- Rabi?? al-manshu?d"}
{"author":"Na?s?ir Nimri?","book":"Adi?b ?Abba?si?"}
{"author":"Muz?affar ?Abd al-Maji?d Kammu?nah","book":"Asma?? Alla?h al-h?usna? al-wa?ridah fi? muh?kam kita?bih"}
{"author":"H?asan Mus?t?afa? Ah?mad","book":"al- Jabhah al-sharqi?yah wa-ma?a?rikuha? fi? h?arb Ramad?a?n"}
{"author":"Rafi?qah Sali?m H?ammu?d","book":"Ta?li?m fi? al-Bah?rayn"}
Run Code Online (Sandbox Code Playgroud)
这是我的java文件,我应该编写我的代码(CombineBooks.java)
package org.hwone;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.util.GenericOptionsParser;
//TODO import necessary components
/*
* Modify this file to combine books from the same other into
* single JSON object.
* i.e. {"author": "Tobias Wells", "books": [{"book":"A die in the country"},{"book": "Dinky died"}]}
* Beaware that, this may work on anynumber of nodes!
*
*/
public class CombineBooks {
//TODO define variables and implement necessary components
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: CombineBooks <in> <out>");
System.exit(2);
}
//TODO implement CombineBooks
Job job = new Job(conf, "CombineBooks");
//TODO implement CombineBooks
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
Run Code Online (Sandbox Code Playgroud)
我的任务是在"question-2"目录中返回的"CombineBooks.java"中创建一个Hadoop程序.该程序应该执行以下操作:给定输入作者 - 书元组,map-reduce程序应该生成一个JSON对象,其中包含来自JSON数组中同一作者的所有书籍,即
{"author": "Tobias Wells", "books":[{"book":"A die in the country"},{"book": "Dinky died"}]}
Run Code Online (Sandbox Code Playgroud)
知道如何做到这一点?
0x0*_*FFF 12
首先,您尝试使用的JSON对象不适用于您.要解决这个问题:
接下来,代码的第一行生成一个包"org.json",这是不正确的,你要创建一个单独的包,例如"my.books".
第三,在这里使用组合器是没用的.
这是我最终得到的代码,它可以解决您的问题:
package my.books;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.json.*;
import javax.security.auth.callback.TextInputCallback;
public class CombineBooks {
public static class Map extends Mapper<LongWritable, Text, Text, Text>{
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException{
String author;
String book;
String line = value.toString();
String[] tuple = line.split("\\n");
try{
for(int i=0;i<tuple.length; i++){
JSONObject obj = new JSONObject(tuple[i]);
author = obj.getString("author");
book = obj.getString("book");
context.write(new Text(author), new Text(book));
}
}catch(JSONException e){
e.printStackTrace();
}
}
}
public static class Reduce extends Reducer<Text,Text,NullWritable,Text>{
public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException{
try{
JSONObject obj = new JSONObject();
JSONArray ja = new JSONArray();
for(Text val : values){
JSONObject jo = new JSONObject().put("book", val.toString());
ja.put(jo);
}
obj.put("books", ja);
obj.put("author", key.toString());
context.write(NullWritable.get(), new Text(obj.toString()));
}catch(JSONException e){
e.printStackTrace();
}
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
if (args.length != 2) {
System.err.println("Usage: CombineBooks <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "CombineBooks");
job.setJarByClass(CombineBooks.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(NullWritable.class);
job.setOutputValueClass(Text.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
Run Code Online (Sandbox Code Playgroud)
这是我项目的文件夹结构:
src
src/my
src/my/books
src/my/books/CombineBooks.java
src/org
src/org/json
src/org/json/zip
src/org/json/zip/BitReader.java
...
src/org/json/zip/None.java
src/org/json/JSONStringer.java
src/org/json/JSONML.java
...
src/org/json/JSONException.java
Run Code Online (Sandbox Code Playgroud)
这是输入
[localhost:CombineBooks]$ hdfs dfs -cat /example.txt
{"author":"author1", "book":"book1"}
{"author":"author1", "book":"book2"}
{"author":"author1", "book":"book3"}
{"author":"author2", "book":"book4"}
{"author":"author2", "book":"book5"}
{"author":"author3", "book":"book6"}
Run Code Online (Sandbox Code Playgroud)
要运行的命令:
hadoop jar ./bookparse.jar my.books.CombineBooks /example.txt /test_output
Run Code Online (Sandbox Code Playgroud)
这是输出:
[pivhdsne:CombineBooks]$ hdfs dfs -cat /test_output/part-r-00000
{"books":[{"book":"book3"},{"book":"book2"},{"book":"book1"}],"author":"author1"}
{"books":[{"book":"book5"},{"book":"book4"}],"author":"author2"}
{"books":[{"book":"book6"}],"author":"author3"}
Run Code Online (Sandbox Code Playgroud)
您可以使用三个选项将org.json.*类放入集群中:
org.json.*类打包到jar文件中(可以使用GUI IDE轻松完成).这是我在答案中使用的选项org.json.*每个集群节点上的类的jar文件放入其中一个CLASSPATH目录中(请参阅yarn.application.classpath)org.json.*放入HDFS(hdfs dfs -put <org.json jar> <hdfs path>)并使用job.addFileToClassPath对此jar文件的调用可用于在集群上执行作业的所有任务.在我的回答你应该添加job.addFileToClassPath(new Path("<jar_file_on_hdfs_location>"));到main| 归档时间: |
|
| 查看次数: |
18537 次 |
| 最近记录: |