我喜欢reshape2套餐,因为它让生活如此轻松.通常,Hadley在之前的软件包中进行了改进,从而实现了简化,运行速度更快的代码.我想我给tidyr一抡,并从我读我认为gather
是非常相似melt
的reshape2.但在阅读完文档后,我无法gather
完成相同的任务melt
.
数据视图
这是一个数据视图(dput
帖子末尾的实际数据):
teacher yr1.baseline pd yr1.lesson1 yr1.lesson2 yr2.lesson1 yr2.lesson2 yr2.lesson3
1 3 1/13/09 2/5/09 3/6/09 4/27/09 10/7/09 11/18/09 3/4/10
2 7 1/15/09 2/5/09 3/3/09 5/5/09 10/16/09 11/18/09 3/4/10
3 8 1/27/09 2/5/09 3/3/09 4/27/09 10/7/09 11/18/09 3/5/10
Run Code Online (Sandbox Code Playgroud)
码
这是melt
时尚的代码,我的尝试gather
.我gather
怎么能做同样的事情melt
?
library(reshape2); library(dplyr); library(tidyr)
dat %>%
melt(id=c("teacher", "pd"), value.name="date")
dat %>%
gather(key=c(teacher, pd), value=date, -c(teacher, pd))
Run Code Online (Sandbox Code Playgroud)
期望的输出
teacher pd variable date
1 3 2/5/09 yr1.baseline 1/13/09
2 7 2/5/09 yr1.baseline 1/15/09
3 8 2/5/09 yr1.baseline 1/27/09
4 3 2/5/09 yr1.lesson1 3/6/09
5 7 2/5/09 yr1.lesson1 3/3/09
6 8 2/5/09 yr1.lesson1 3/3/09
7 3 2/5/09 yr1.lesson2 4/27/09
8 7 2/5/09 yr1.lesson2 5/5/09
9 8 2/5/09 yr1.lesson2 4/27/09
10 3 2/5/09 yr2.lesson1 10/7/09
11 7 2/5/09 yr2.lesson1 10/16/09
12 8 2/5/09 yr2.lesson1 10/7/09
13 3 2/5/09 yr2.lesson2 11/18/09
14 7 2/5/09 yr2.lesson2 11/18/09
15 8 2/5/09 yr2.lesson2 11/18/09
16 3 2/5/09 yr2.lesson3 3/4/10
17 7 2/5/09 yr2.lesson3 3/4/10
18 8 2/5/09 yr2.lesson3 3/5/10
Run Code Online (Sandbox Code Playgroud)
数据
dat <- structure(list(teacher = structure(1:3, .Label = c("3", "7",
"8"), class = "factor"), yr1.baseline = structure(1:3, .Label = c("1/13/09",
"1/15/09", "1/27/09"), class = "factor"), pd = structure(c(1L,
1L, 1L), .Label = "2/5/09", class = "factor"), yr1.lesson1 = structure(c(2L,
1L, 1L), .Label = c("3/3/09", "3/6/09"), class = "factor"), yr1.lesson2 = structure(c(1L,
2L, 1L), .Label = c("4/27/09", "5/5/09"), class = "factor"),
yr2.lesson1 = structure(c(2L, 1L, 2L), .Label = c("10/16/09",
"10/7/09"), class = "factor"), yr2.lesson2 = structure(c(1L,
1L, 1L), .Label = "11/18/09", class = "factor"), yr2.lesson3 = structure(c(1L,
1L, 2L), .Label = c("3/4/10", "3/5/10"), class = "factor")), .Names = c("teacher",
"yr1.baseline", "pd", "yr1.lesson1", "yr1.lesson2", "yr2.lesson1",
"yr2.lesson2", "yr2.lesson3"), row.names = c(NA, -3L), class = "data.frame")
Run Code Online (Sandbox Code Playgroud)
Dav*_*son 83
你的gather
行应该是这样的:
dat %>% gather(variable, date, -teacher, -pd)
Run Code Online (Sandbox Code Playgroud)
这表示"收集除了teacher
和之外的所有变量pd
,调用新的键列'变量'和新值列'日期'."
作为解释,请从help(gather)
页面中注意以下内容:
...: Specification of columns to gather. Use bare variable names.
Select all variables between x and z with ‘x:z’, exclude y
with ‘-y’. For more options, see the select documentation.
Run Code Online (Sandbox Code Playgroud)
由于这是省略号,因此要收集的列的规范是作为单独的(裸名称)参数给出的.我们希望收集除teacher
和之外的所有列pd
,因此我们使用-
.
在 tidyr 1.0.0 中,此任务通过更灵活的pivot_longer()
.
等效的语法是
library(tidyr)
dat %>% pivot_longer(cols = -c(teacher, pd), names_to = "variable", values_to = "date")
Run Code Online (Sandbox Code Playgroud)
相应地,它表示“将除teacher
and之外的所有内容都旋转更长的时间pd
,将新变量列称为“变量”,将新值列称为“日期”。
请注意,长数据首先按照前一个数据帧中被旋转的列gather
的顺序返回,这与 from 不同,后者按照新变量列的顺序返回。要重新排列生成的小标题,请使用dplyr::arrange()
.