lum*_*lum 12 numpy amazon-ec2 blas accelerate-framework openblas
我正在运行一个用Python实现并使用NumPy的算法.算法中计算成本最高的部分涉及求解一组线性系统(即调用numpy.linalg.solve().我想出了这个小基准:
import numpy as np
import time
# Create two large random matrices
a = np.random.randn(5000, 5000)
b = np.random.randn(5000, 5000)
t1 = time.time()
# That's the expensive call:
np.linalg.solve(a, b)
print time.time() - t1
Run Code Online (Sandbox Code Playgroud)
我一直在运行:
sysctl -n machdep.cpu.brand_string给我Intel(R)Core(TM)i7-4750HQ CPU @ 2.00GHz)c3.xlarge实例,具有4个vCPU.亚马逊宣称它们为"高频英特尔至强E5-2680 v2(Ivy Bridge)处理器"底线:
我也在其他基于OpenBLAS/Intel MKL的设置上尝试过它,运行时总是与我在EC2实例上得到的(模块化硬件配置)相当.
任何人都可以解释为什么Mac(使用Accelerate Framework)的性能提高了4倍?下面提供了有关NumPy/BLAS设置的更多详细信息.
numpy.show_config() 给我:
atlas_threads_info:
NOT AVAILABLE
blas_opt_info:
extra_link_args = ['-Wl,-framework', '-Wl,Accelerate']
extra_compile_args = ['-msse3', '-I/System/Library/Frameworks/vecLib.framework/Headers']
define_macros = [('NO_ATLAS_INFO', 3)]
atlas_blas_threads_info:
NOT AVAILABLE
openblas_info:
NOT AVAILABLE
lapack_opt_info:
extra_link_args = ['-Wl,-framework', '-Wl,Accelerate']
extra_compile_args = ['-msse3']
define_macros = [('NO_ATLAS_INFO', 3)]
atlas_info:
NOT AVAILABLE
lapack_mkl_info:
NOT AVAILABLE
blas_mkl_info:
NOT AVAILABLE
atlas_blas_info:
NOT AVAILABLE
mkl_info:
NOT AVAILABLE
Run Code Online (Sandbox Code Playgroud)
在Ubuntu 14.04上,我安装了OpenBLAS
sudo apt-get install libopenblas-base libopenblas-dev
Run Code Online (Sandbox Code Playgroud)
安装NumPy时,我创建了一个site.cfg包含以下内容:
[default]
library_dirs= /usr/lib/openblas-base
[atlas]
atlas_libs = openblas
Run Code Online (Sandbox Code Playgroud)
numpy.show_config() 给我:
atlas_threads_info:
libraries = ['lapack', 'openblas']
library_dirs = ['/usr/lib']
define_macros = [('ATLAS_INFO', '"\\"None\\""')]
language = f77
include_dirs = ['/usr/include/atlas']
blas_opt_info:
libraries = ['openblas']
library_dirs = ['/usr/lib']
language = f77
openblas_info:
libraries = ['openblas']
library_dirs = ['/usr/lib']
language = f77
lapack_opt_info:
libraries = ['lapack', 'openblas']
library_dirs = ['/usr/lib']
define_macros = [('ATLAS_INFO', '"\\"None\\""')]
language = f77
include_dirs = ['/usr/include/atlas']
openblas_lapack_info:
NOT AVAILABLE
lapack_mkl_info:
NOT AVAILABLE
blas_mkl_info:
NOT AVAILABLE
mkl_info:
NOT AVAILABLE
Run Code Online (Sandbox Code Playgroud)
出现此行为的原因可能是 Accelerate 使用多线程,而其他则不使用。
大多数 BLAS 实现都遵循环境变量OMP_NUM_THREADS来确定要使用多少个线程。我相信如果没有明确告知的话他们只使用 1 个线程。
Accelerate 的手册页,但是听起来默认情况下线程是打开的;可以通过设置环境变量来关闭它VECLIB_MAXIMUM_THREADS。
要确定这是否真的发生了,请尝试
export VECLIB_MAXIMUM_THREADS=1
Run Code Online (Sandbox Code Playgroud)
在调用 Accelerate 版本之前,以及
export OMP_NUM_THREADS=4
Run Code Online (Sandbox Code Playgroud)
对于其他版本。
无论这是否是真正的原因,在使用 BLAS 时始终设置这些变量是一个好主意,以确保您控制正在发生的事情。