MATLAB中的SVM可视化

djp*_*121 8 matlab classification svm pca libsvm

在Matlab中执行SVM训练后,如何可视化SVM分类?

到目前为止,我只训练过SVM:

% Labels are -1 or 1
groundTruth = Ytrain;
d = xtrain;

model = svmtrain(groundTruth, d);
Run Code Online (Sandbox Code Playgroud)

Lor*_*col 7

如果您使用的是LIBSVM,则可以绘制分类结果:

% Labels are -1 or 1
groundTruth = Ytrain;
d = xtrain;

figure

% plot training data
hold on;
pos = find(groundTruth==1);
scatter(d(pos,1), d(pos,2), 'r')
pos = find(groundTruth==-1);
scatter(d(pos,1), d(pos,2), 'b')

% now plot support vectors
hold on;
sv = full(model.SVs);
plot(sv(:,1),sv(:,2),'ko');

% now plot decision area
[xi,yi] = meshgrid([min(d(:,1)):0.01:max(d(:,1))],[min(d(:,2)):0.01:max(d(:,2))]);
dd = [xi(:),yi(:)];
tic;[predicted_label, accuracy, decision_values] = svmpredict(zeros(size(dd,1),1), dd, model);toc
pos = find(predicted_label==1);
hold on;
redcolor = [1 0.8 0.8];
bluecolor = [0.8 0.8 1];
h1 = plot(dd(pos,1),dd(pos,2),'s','color',redcolor,'MarkerSize',10,'MarkerEdgeColor',redcolor,'MarkerFaceColor',redcolor);
pos = find(predicted_label==-1);
hold on;
h2 = plot(dd(pos,1),dd(pos,2),'s','color',bluecolor,'MarkerSize',10,'MarkerEdgeColor',bluecolor,'MarkerFaceColor',bluecolor);
uistack(h1, 'bottom');
uistack(h2, 'bottom');
Run Code Online (Sandbox Code Playgroud)


Amr*_*mro 0

查看这个svm-toy函数,它与 LIBSVM 中的函数类似。显然它只适用于二维二元分类